Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisticians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay differential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based optimization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of noisy chaotic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491657 | PMC |
http://dx.doi.org/10.1007/s10928-019-09629-4 | DOI Listing |
Sci Rep
December 2024
Department of Applied Mathematics, Tokyo University of Science, Shinjuku, Tokyo, 162-8601, Japan.
Reservoir computing is a machine learning framework that exploits nonlinear dynamics, exhibiting significant computational capabilities. One of the defining characteristics of reservoir computing is that only linear output, given by a linear combination of reservoir variables, is trained. Inspired by recent mathematical studies of generalized synchronization, we propose a novel reservoir computing framework with a generalized readout, including a nonlinear combination of reservoir variables.
View Article and Find Full Text PDFChaos
December 2024
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.
In the classical control of network systems, the control actions on a node are determined as a function of the states of all nodes in the network. Motivated by applications where the global state cannot be reconstructed in real time due to limitations in the collection, communication, and processing of data, here we introduce a control approach in which the control actions can be computed as a function of the states of the nodes within a limited state information neighborhood. The trade-off between the control performance and the size of this neighborhood is primarily determined by the condition number of the controllability Gramian.
View Article and Find Full Text PDFChaos
December 2024
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam 14473, Germany.
Adaptive dynamical networks are ubiquitous in real-world systems. This paper aims to explore the synchronization dynamics in networks of adaptive oscillators based on a paradigmatic system of adaptively coupled phase oscillators. Our numerical observations reveal the emergence of synchronization cluster bursting, characterized by periodic transitions between cluster synchronization and global synchronization.
View Article and Find Full Text PDFChaos
December 2024
Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; and Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany.
Given two unidirectionally coupled nonlinear systems, we speak of generalized synchronization when the responder "follows" the driver. Mathematically, this situation is implemented by a map from the driver state space to the responder state space termed the synchronization map. In nonlinear times series analysis, the framework of the present work, the existence of the synchronization map amounts to the invertibility of the so-called cross map, which is a continuous map that exists in the reconstructed state spaces for typical time-delay embeddings.
View Article and Find Full Text PDFChaos
December 2024
Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
Adaptive network is a powerful presentation to describe different real-world phenomena. However, current models often neglect higher-order interactions (beyond pairwise interactions) and diverse adaptation types (cooperative and competitive) commonly observed in systems such as the human brain and social networks. This work addresses this gap by incorporating these factors into a model that explores their impact on collective properties such as synchronization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!