Nitrogen removal from landfill leachate via anaerobic ammonium oxidation (Anammox) process has been considered as an innovative and sustainable approach to the traditional nitrification and denitrification process. However, the various technologies for rapid start-up of Anammox are still being explored. In this study, two strategies (inoculating anaerobic sludge and without inoculation) were applied to treat landfill leachate based on biological nitrogen removal processes. The start-up and mechanism of de-nitrogen process in landfill bioreactor was explored using N stable isotopic tracing, quantitative polymerase chain reaction (qPCR) and high-throughput sequencing methods. Results showed that inoculating anaerobic sludge was beneficial to enhance the nitrogen removal at the initial stage (from day 10 to day 25), but no significant increase was found during days 25-55 (p > 0.05). N stable isotopic tracing demonstrated that the inoculation of sludge accelerated by denitrification other than Anammox. Inoculation of sludge was conducive to increase of ammonia-oxidizing bacteria (AOB)- amoA and niK genes. Thauera was the dominant genus for nitrogen removal due to inoculation of sludge in landfill bioreactor, whereas the abundance of Candidatus Kuenenia did not increase by inoculating the sludge. Moreover, seeding anaerobic sludge could not provide Anammox's ecological niches. The results will provide a scientific basis for the selection of suitable operational condition for the rapid start-up in the landfill bioreactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.03.111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!