To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441717 | PMC |
http://dx.doi.org/10.1016/j.isci.2019.03.014 | DOI Listing |
Cells
December 2024
Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium.
The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States.
Human studies examining the cellular mechanisms behind sarcopenia, or age-related loss of skeletal muscle mass and function, have produced inconsistent results. A systematic review and meta-analysis were performed to determine the aging effects on protein expression, size, and distribution of fibers with various myosin heavy chain (MyHC) isoforms. Study eligibility included MyHC comparisons between young (18-49 yr) and older (≥60 yr) adults, with 27 studies identified.
View Article and Find Full Text PDFJ Gen Physiol
December 2024
Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
J Cell Sci
October 2024
Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.
Int J Mol Sci
September 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites coupled to inorganic phosphate (Pi) release. Here, myofibrils from samples of human left ventricle (β-slow MyHC-7) and left atrium (α-fast MyHC-6) from healthy donors were used to study the differential effects of μmolar [OM] on isometric force in relaxing conditions (pCa 9.0) and at maximal (pCa 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!