Essential AA are critical for multiple physiological processes. Branched-chain AA (BCAA) supplementation has beneficial effects on body weight, lipogenesis, and insulin resistance in several species. The BCAA are used for milk and body protein synthesis as well as being oxidized by the tricarboxylic acid cycle to produce ATP during catabolic states. The objective was to evaluate the effect of rumen-protected BCAA (375 g of 27% l-Leu, 85 g of 48% l-Ile, and 91 g of 67% l-Val) with or without propylene glycol (PG) oral administration on milk production, dry matter intake, nonesterified fatty acids, β-hydroxybutyrate, and plasma urea nitrogen during the first 35 d in milk (DIM) in dairy cattle. Multiparous Holstein cows were enrolled in blocks of three 28 d before expected calving and assigned randomly to either the control or 1 of 2 treatments. The control (n = 26) received 200 g/d of dry molasses, the BCAA treatment (n = 23) received BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM, and the BCAA plus PG (BCAAPG) treatment (n = 25) received BCAA mixed with 200 g/d of dry molasses from calving until 35 DIM plus 300 mL of PG once daily from calving until 7 DIM. Postpartum, dry matter intake least squares means (LSM; 95% confidence interval) were 20.7 (19.9, 21.7), 21.3 (20.4, 22.3), and 21.9 (20.9, 22.8) kg for control, BCAA, and BCAAPG, respectively. Milk yield (1-35 DIM) LSM were 41.7 (39.4, 44.0), 42.7 (40.3, 45.0), and 43.7 (41.4, 46.0) kg for control, BCAA, and BCAAPG, respectively. Energy-corrected milk LSM were 50.3 (46.8, 53.7), 52.4 (48.9, 55.8), and 52.9 (49.5, 56.4) kg for control, BCAA, and BCAAPG, respectively. Milk urea nitrogen LSM in milk for control, BCAA, and BCAAPG were 8.60 (8.02, 9.22), 9.70 (9.01, 10.45), and 9.75 (9.08, 10.47) mg/dL. Plasma urea nitrogen concentrations LSM for control, BCAA, and BCAAPG were 8.3 (7.7, 8.9), 10.1 (9.4, 10.9), and 9.6 (9.4, 10.3) mg/dL, respectively. The numbers of plasma samples classified as hyperketonemia were 77, 44, and 57 in control, BCAA, and BCAAPG, respectively. The BCAA supplementation increased plasma urea nitrogen and milk urea nitrogen, free valine concentration in plasma, and decreased hyperketonemia events during the postpartum period.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2018-15508DOI Listing

Publication Analysis

Top Keywords

bcaa bcaapg
28
control bcaa
24
urea nitrogen
20
bcaa
14
plasma urea
12
200 g/d
12
g/d dry
12
dry molasses
12
calving dim
12
milk
9

Similar Publications

Essential amino acids (EAA) are critical for multiple physiological processes. Branched-chain amino acid (BCAA) supplementation provides energy substrates, promotes protein synthesis, and stimulates insulin secretion in rodents and humans. Most dairy cows face a protein and energy deficit during the first weeks postpartum and utilize body reserves to counteract this shortage.

View Article and Find Full Text PDF

Essential AA are critical for multiple physiological processes. Branched-chain AA (BCAA) supplementation has beneficial effects on body weight, lipogenesis, and insulin resistance in several species. The BCAA are used for milk and body protein synthesis as well as being oxidized by the tricarboxylic acid cycle to produce ATP during catabolic states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!