Perturbation effect of parallel-plate ionization chambers on buildup dose measurements in transverse magnetic fields.

Phys Med

Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, Japan.

Published: March 2019

The aim of this study is to investigate the perturbation effect of parallel-plate ionization chambers on the buildup dose measurement in transverse magnetic fields, using Monte Carlo (MC) simulation. The NACP-02 and ROOS parallel-plate chambers and a PTW31010 cylindrical chamber were modeled for buildup dose measurement in magnetic fields, using the EGSnrc/cavity code. The irradiation condition was set to a 10 × 10 cm field in a water phantom at a source-to-surface distance (SSD) of 100 cm, using 6-MV photon spectrum. Magnetic fields of 0 0.35, 1.0, 1.5, and 3.0 T were applied perpendicularly to the direction of the photon beam. The overall perturbation factor P for the ionization chambers in the magnetic fields was also calculated. The dose to water was enhanced with increasing the magnetic field strength at a depth of less than 1 cm. Over a depth of 1.5 cm, there was no significant difference in the depth doses with and without magnetic field in water. The maximum depth dose (%) for the NACP-02 and ROOS chambers at 1.5 T was higher up to 12% and 14% than the maximum depth dose at 0 T, respectively. The depth dose curves of a PTW31010 chamber have a similar tendency to those of water. The P values for each chamber were the largest at the phantom surface. The transverse magnetic field has a greater effect on the dose response of the NACP and ROOS chambers than that of the PTW31010 chamber in the buildup region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2019.03.011DOI Listing

Publication Analysis

Top Keywords

magnetic fields
20
ionization chambers
12
buildup dose
12
transverse magnetic
12
magnetic field
12
depth dose
12
perturbation parallel-plate
8
parallel-plate ionization
8
chambers buildup
8
dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!