The very-high-frequency gun (VHF-Gun) is a new concept photo-injector developed and built at the Lawrence Berkeley National Laboratory (LBNL) for generating high-brightness electron beams capable of driving X-ray free electron lasers (FELs) at MHz-class repetition rates. The gun that purposely uses established and mature radiofrequency and mechanical technologies has demonstrated over the last many years the capability of reliably operating in continuous wave mode at the design accelerating fields and required vacuum and mechanical performance. The results of VHF-Gun technology demonstration were reported elsewhere [Sannibale et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 103501 (2012)]; here in this paper, we provide and analyze examples of the experimental results of the first high-brightness beam tests performed at the Advanced Photo-injector EXperiment test facility at LBNL that demonstrated the gun capability of delivering the beam quality required for driving high repetition rate X-ray FELs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5088521DOI Listing

Publication Analysis

Top Keywords

high-brightness beam
8
beam tests
8
advanced photo-injector
8
photo-injector experiment
8
experiment test
8
test facility
8
lawrence berkeley
8
berkeley national
8
national laboratory
8
tests high
4

Similar Publications

Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.

View Article and Find Full Text PDF

Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy.

J Phys Chem Lett

January 2025

College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China.

One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors.

View Article and Find Full Text PDF

Scintillation screens are widely used to diagnose high-charge density, low-average current electron beams from laser wakefield accelerators (LWFAs). However, the absolute response between emitted photons and electron charge has only been calibrated at a limited number of facilities, and there have been discrepancies between these calibrations. In this report, we comprehensively revised the absolute charge calibration of two high relative brightness scintillating screens of LANEX Regular (Carestream) and PI200 (Mitsubishi) by employing the high-brightness photoinjector at the National Synchrotron Radiation Research Center (NSRRC), which provides electron beams with variable charges (50-350 pC per pulse) and energies (26.

View Article and Find Full Text PDF

X-ray free-electron lasers (FELs) are modern research tools with applications in multiple scientific fields. Standard x-ray FEL pulses are produced by the self-amplified spontaneous emission (SASE) mechanism. SASE-FEL pulses have high power, short duration, and excellent transverse coherence but exhibit poor temporal coherence with power and spectral profiles consisting of multiple randomly distributed spikes.

View Article and Find Full Text PDF

Inhomogeneous waveguides with corrugations have the potential to increase the fundamental mode brightness of edge-emitting lasers as compared to straight waveguides. The corrugations partly suppress the high-order lateral modes of the lasers. The impact of the shape and size of rectangular and triangular types of corrugations on the lasing performance is compared for the first time, and an optimized design is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!