AI Article Synopsis

  • This study investigates bacterial laccases found in soil, focusing on their role in lignin degradation and how these enzymes can be identified through metagenomics in ancient soil layers (paleosols).
  • Using gene-targeted assembly, researchers successfully cloned and expressed novel laccase enzymes from alpine soil, demonstrating their functionality against specific substrates.
  • The findings highlight the potential of paleosols as a rich source for discovering new biocatalytic enzymes and establish a connection between soil layers and enzyme activity profiling.

Article Abstract

Bacterial laccases are now known to be abundant in soil and to function outside of the cell facilitating the bacterial degradation of lignin. In this study we wanted to test the hypotheses that: i) Such enzymes can be identified readily in stratified paleosols using metagenomics approaches, ii) The distribution of these genes as potential 'public good' proteins in soil is a function of the soil environment, iii) Such laccase genes can be readily retrieved and expressed in E. coli cloning systems to demonstrate that de novo assembly processes can be used to obtain similar metagenome-derived enzyme activities. To test these hypotheses, in silico gene-targeted assembly was employed to identify genes encoding novel type B two-domain bacterial laccases from alpine soil metagenomes sequenced on an Illumina MiSeq sequencer. The genes obtained from different strata were heterologously cloned, expressed and the gene products were shown to be active against two classical laccase substrates. The use of a metagenome-driven pipeline to obtain such active biocatalysts has demonstrated the potential for gene mining to be applied systematically for the discovery of such enzymes. These data ultimately further demonstrate the application of soil pedology methods to environmental enzyme discovery. As an interdisciplinary effort, we can now establish that paleosols can serve as a useful source of novel biocatalytic enzymes for various applications. We also, for the first time, link soil stratigraphy to enzyme profiling for widespread functional gene activity in paleosols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.03.250DOI Listing

Publication Analysis

Top Keywords

bacterial laccases
12
laccases alpine
8
soil stratigraphy
8
soil function
8
test hypotheses
8
soil
7
distribution novel
4
bacterial
4
novel bacterial
4
paleosols
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!