Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.14633DOI Listing

Publication Analysis

Top Keywords

deciduous trees
12
heat requirement
12
leaf-out
11
temperate deciduous
8
trees leaf-out
8
daylength temperature
8
requirement leaf-out
8
springs leaf-out
8
leaf-out late
8
daylength
6

Similar Publications

Comparative Foliar Atmospheric Mercury Accumulation across Functional Types in Temperate Trees.

Environ Sci Technol

January 2025

State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δC, δO, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THg), which were 85.

View Article and Find Full Text PDF

Chromosome-level genome assembly of tetraploid Chinese cherry (Prunus pseudocerasus).

Sci Data

January 2025

Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Chinese cherry belongs to the family Rosaceae, genus Prunus, and has high nutritional and economic value. 'Duiying' is a Chinese cherry variety local to Beijing, and has better performance than sweet cherry in terms of disease resistance. However, disease resistance resources of 'Duiying' have not been fully exploited partially due to the lack of a high-quality genome.

View Article and Find Full Text PDF

Assessing the seasonality of foliar nutrient concentrations in woody plants.

Ecology

January 2025

CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.

Seasonal variations in foliar nutrient concentrations are an important strategy of plants to adapt to different climates and availabilities of soil nutrients. Gaps in our knowledge, however, remain in both the seasonality of the concentrations of multiple nutrients in plant leaves and their spatial pattern on a large scale. We compiled data on foliar concentrations of nine essential nutrients (N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu) in woody plants in China and evaluated the characteristics and latitudinal patterns of their seasonal variability (i.

View Article and Find Full Text PDF

The use of stored carbon is essential for new organ development in deciduous trees during early spring. However, the contribution of carbon to the development of new organs in early spring of subsequent years is not well understood. Using a C labelling approach, we investigated the reallocation of assimilated carbon into new aboveground organs on apple (Malus domestica) saplings in the following two years.

View Article and Find Full Text PDF

A female sterilization method for use in field-based behavioral studies of the invasive Asian longhorned beetle (Anoplophora glabripennis).

J Insect Sci

January 2025

Northern Research Station, U.S. Forest Service, United States Department of Agriculture, Hamden, CT, USA.

Asian longhorned beetle (Anoplophora glabripennis Motschulsky), a wood borer (Coleoptera: Cerambycidae) native to China, has been unintentionally and repeatedly introduced to North American and European landscapes as a stow-away in the wood packing material commonly used in international trade. Asian longhorned beetle causes extensive damage and mortality in multiple deciduous tree species and in response, countries in both North America and Europe have adopted policies of eradication. Models that integrate patterns of Asian longhorned beetle dispersal with records of infested trees are critical in optimizing survey and eradication efforts and tracking eradication progress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!