A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid. | LitMetric

Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid.

Appl Microbiol Biotechnol

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

Published: May 2019

High-level biosynthesis of desired metabolites is challenging due to complexity of metabolic networks. Here, we report that platform chemical 3-hydroxypropionic acid (3-HP) can be overproduced through promoter engineering and growth-sustaining cultivation, two parallel strategies relying on RNA polymerases (RNAPs). First, we screened a promoter library and revealed that IPTG-inducible tac promoter was most effective for overexpression of PuuC, an endogenous aldehyde dehydrogenase catalyzing 3-HP biosynthesis in Klebsiella pneumoniae. Next, tandem repetitive tac promoters were harnessed to accommodate adequate RNAPs. When three tandem repetitive tac promoters were recruited to overexpress PuuC, up to 102.61 g/L 3-HP was produced. This is the highest 3-HP titer reported so far. In addition, lactic acid completely vanished during the late stage of fermentation. The backflow of lactic acid to pyruvic acid saves the trouble of downstream separation of lactic acid from 3-HP, which has long been a mission impossible because they are small-molecule isomers. Furthermore, timely removal of acid stress and replenishment of nitrogen source are crucial for 3-HP biosynthesis. A mathematical model shows that RNAPs modulate the tradeoff between bacterial growth and 3-HP formation. Overall, promoter engineering and growth-promoting cultivation jointly leverage RNAPs to maximize 3-HP. This study provides a paradigm for maximizing growth-coupled metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-09772-5DOI Listing

Publication Analysis

Top Keywords

tandem repetitive
12
lactic acid
12
3-hydroxypropionic acid
8
3-hp
8
acid 3-hp
8
promoter engineering
8
3-hp biosynthesis
8
repetitive tac
8
tac promoters
8
acid
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!