Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2A phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2A activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2A phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2A activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105415 | PMC |
http://dx.doi.org/10.1007/s00018-019-03086-5 | DOI Listing |
Int J Mol Sci
November 2024
Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.
View Article and Find Full Text PDFTurk J Biol
September 2024
Department of Molecular Biology and Genetics, College of Sciences, Koç University, İstanbul, Turkiye.
Background/aim: The conserved phosphatase Cdc14 facilitates mitotic exit in budding yeast by counteracting mitotic cyclin-dependent kinase activity. Cdc14 is kept in the nucleolus until anaphase onset, when it is released transiently into the nucleoplasm. In late anaphase, Cdc14 is fully released into the cytoplasm upon activation of the mitotic exit network (MEN) to trigger mitotic exit.
View Article and Find Full Text PDFJ Biol Chem
September 2024
Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA. Electronic address:
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle.
View Article and Find Full Text PDFCell Rep
July 2024
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA. Electronic address:
In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown.
View Article and Find Full Text PDFMicroPubl Biol
June 2024
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US.
The septation initiation network (SIN) promotes cytokinesis and septation. Comprised of a protein kinase cascade triggered by activation of a small GTPase and inhibited by a two-component GAP that localize to the spindle pole bodies in a cell cycle specific manner. Here, we characterized temperature-sensitive mutants isolated in the 1990s in four SIN components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!