G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612303 | PMC |
http://dx.doi.org/10.1007/s00216-019-01774-6 | DOI Listing |
Plant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFScience
January 2025
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles.
View Article and Find Full Text PDFNat Methods
January 2025
Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.
View Article and Find Full Text PDFCurr Opin Genet Dev
February 2025
Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!