Eukaryotic genomes are replicated under the control of a highly sophisticated program during the restricted time period corresponding to S phase. The most widely used replication timing assays, which are performed on populations of millions of cells, suggest that most of the genome is synchronously replicated on homologous chromosomes. We investigated the stochastic nature of this temporal program, by comparing the precise replication times of allelic loci within single vertebrate cells progressing through S phase at six loci replicated from very early to very late. We show that replication timing is strictly controlled for the three loci replicated in the first half of S phase. Out of the three loci replicated in the second part of S phase, two present a significantly more stochastic pattern. Surprisingly, we find that the locus replicated at the very end of S phase, presents stochasticity similar to those replicated in early S phase. We suggest that the richness of loci in efficient origins of replication, which decreases from early- to late-replicating regions, and the strength of interaction with the nuclear lamina may underlie the variation of timing control during S phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547449 | PMC |
http://dx.doi.org/10.1093/nar/gkz220 | DOI Listing |
Front Genet
January 2025
Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
Background: Patent foramen ovale (PFO) is a congenital defect between the atria, resulting in abnormal hemodynamics. We conducted a genome-wide association study (GWAS) to identify common genetic variants associated with PFO.
Methods: We performed a whole genome sequencing in a discovery cohort of 3,227 unrelated Chinese participants screened for PFO via contrast transthoracic echocardiography (cTTE).
Thyroid
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Epidemiological data suggest the population distribution of thyrotropin (TSH) values is shifted toward lower values in self-identified Black non-Hispanic individuals compared with self-identified White non-Hispanic individuals. It is unknown whether genetic differences between individuals with genetic similarities to African reference populations (GSA) and those with similarities to European reference populations (GSE) contribute to these observed differences. We aimed to compare genome-wide associations with TSH and putative causal TSH-associated variants between GSA and GSE groups.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Center for Non-Communicable Disease Management Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing China.
Background: The differential impact of serum lipids and their targets for lipid modification on cardiometabolic disease risk is debated. This study used Mendelian randomization to investigate the causal relationships and underlying mechanisms.
Methods: Genetic variants related to lipid profiles and targets for lipid modification were sourced from the Global Lipids Genetics Consortium.
Probl Endokrinol (Mosk)
January 2024
Background: Osteoporosis is a common age-related disease with disabling consequences, the early diagnosis of which is difficult due to its long and hidden course, which often leads to diagnosis only after a fracture. In this regard, great expectations are placed on advanced developments in machine learning technologies aimed at predicting osteoporosis at an early stage of development, including the use of large data sets containing information on genetic and clinical predictors of the disease. Nevertheless, the inclusion of DNA markers in prediction models is fraught with a number of difficulties due to the complex polygenic and heterogeneous nature of the disease.
View Article and Find Full Text PDFPhytoKeys
January 2025
University Museum, The University of Bergen, Postboks 7800, N-5020, Bergen, Norway The University of Bergen Bergen Norway.
Plant phylogenetics has been revolutionised in the genomic era, with target capture acting as the primary workhorse of most recent research in the new field of phylogenomics. Target capture (aka Hyb-Seq) allows researchers to sequence hundreds of genomic regions (loci) of their choosing, at relatively low cost per sample, from which to derive phylogenetically informative data. Although this highly flexible and widely applicable method has rightly earned its place as the field's standard, it does not come without its challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!