A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates. | LitMetric

Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates.

Nat Commun

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005, Paris, France.

Published: March 2019

Many-body systems at low temperatures generally organize themselves into ordered phases, whose nature and symmetries are captured by an order parameter. This order parameter is spatially uniform in the simplest cases, for example the macroscopic magnetization of a ferromagnetic material. Non-uniform situations also exist in nature, for instance in antiferromagnetic materials, where the magnetization alternates in space, or in the so-called stripe phases emerging for itinerant electrons in strongly correlated materials. Understanding such inhomogeneously ordered states is of central importance in many-body physics. Here we study experimentally the magnetic ordering of itinerant spin-1 bosons in inhomegeneous spin domains at nano-Kelvin temperatures. We demonstrate that spin domains form spontaneously, that is purely because of the antiferromagnetic interactions between the atoms and in the absence of external magnetic forces, after a phase separation transition. Furthermore, we explore how the equilibrium domain configuration emerges from an initial state prepared far from equilibrium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441100PMC
http://dx.doi.org/10.1038/s41467-019-08505-6DOI Listing

Publication Analysis

Top Keywords

spin domains
12
order parameter
8
spontaneous formation
4
formation relaxation
4
relaxation spin
4
domains antiferromagnetic
4
antiferromagnetic spin-1
4
spin-1 condensates
4
condensates many-body
4
many-body systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!