Toxic amyloid-β oligomers induced self-replication in astrocytes triggering neuronal injury.

EBioMedicine

Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China; National Clinical Research Center for Geriatric Disorders, Beijing 100053, PR China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, PR China. Electronic address:

Published: April 2019

Background: Soluble amyloid-β oligomer (AβO) induced deleterious cascades have recently been considered to be the initiating pathologic agents of Alzheimer's disease (AD). However, little is known about the neurotoxicity and production of different AβOs. Understanding the production and spread of toxic AβOs within the brain is important to improving understanding of AD pathogenesis and treatment.

Methods: Here, PS1V97L transgenic mice, a useful tool for studying the role of AβOs in AD, were used to identify the specific AβO assembly that contributes to neuronal injury and cognitive deficits. Then, we investigated the production and spread of toxic Aβ assemblies in astrocyte and neuron cultures, and further tested the results following intracerebroventricular injection of AβOs in animal model.

Findings: The results showed that cognitive deficits were mainly caused by the accumulation of nonameric and dodecameric Aβ assemblies in the brains. In addition, we found that the toxic AβOs were duplicated in a time-dependent manner when BACE1 and apolipoprotein E were overexpressed, which were responsible for producing redundant Aβ and forming nonameric and dodecameric assemblies in astrocytes, but not in neurons.

Interpretation: Our results suggest that astrocytes may play a central role in the progression of AD by duplicating and spreading toxic AβOs, thus triggering neuronal injury. FUND: This study was supported by the Key Project of the National Natural Science Foundation of China; the National Key Scientific Instrument and Equipment Development Project; Beijing Scholars Program, and Beijing Brain Initiative from Beijing Municipal Science & Technology Commission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491655PMC
http://dx.doi.org/10.1016/j.ebiom.2019.03.049DOI Listing

Publication Analysis

Top Keywords

neuronal injury
12
toxic aβos
12
triggering neuronal
8
production spread
8
spread toxic
8
cognitive deficits
8
aβ assemblies
8
nonameric dodecameric
8
aβos
6
toxic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!