The current research process in gene therapy for cancer treatment has brought much attention due to its great potential for both inherited and acquired diseases. Precise accumulation in target site and on-demand release of drug is critical factors for the efficient gene therapy. Since the delivery of suitable gene largely depends on the delivery carrier, the design of suitable gene delivery vehicle for the sustained gene release in target site are attracting increasingly interest among the researchers. In this report, an effective and relatively convenient gene delivery platform is developed by the electrostatic interaction between negative charged survivin antisense oligonucleotide (Sur-ASON) and positive charged PHB-b-PDMAEMA (PHB-P) co-polymer and then the induction of thermosensitive PF127 hydrogel. The prepared hydrogel could achieve a sustained gene release property in the tumor region after injection, thus to enhance the effect of Survivin antisense oligonucleotide and inhibit P-gp impaired drug uptake simultaneously. In vivo anti-tumor efficacy and H&E staining indicated that Sur-ASON/PHB-P/PF127 hydrogel was greatly effective in enhancing the treatment effects of Sur-ASON while reducing the degradation and the possible adverse side effects, and this novel hydrogel could achieve the controlled gene release up to maximum 16 days. The aforementioned properties indicated that the novel hydrogel could be applied as a promising and convenient anti-cancer agent for anticancer therapy with minimum injection frequency to possibly increase patient compliance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2019.03.021 | DOI Listing |
J Physiol
January 2025
Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!