Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Shorter analysis times and greater resolving power are contributing factors for transfer of separation methods from an HPLC to a UHPLC system when performing analysis in biopharmaceutical or clinical research. The effect of pressure on separations in reversed phase chromatography is well described, however such investigations on ion exchange columns were previously not conducted. In this study we describe the effect of pressure on retention properties of proteins, oligonucleotides and plasmid DNA in ion exchange chromatography. Different column inlet pressures were obtained by coupling restriction capillaries with column outlet and performing separations at a constant temperature and mobile phase flow rate. Macromolecules were separated in isocratic mode as well as with various linear gradients of salt concentration at a constant pH value. The measured retention time increase was up to 80% for isocratic and 20% for gradient separations for a 500 bar increase in pressure. The effect of pressure was validated on a separate instrument after few months from initial experiments. The influence of pressure on retention properties seems to be dependent on the size, shape and flexibility of the macromolecule and causes different retention shifts when separating a sample with diverse analytes. Such changes in retention time can sometimes exceed the criteria set by European Pharmacopoeia (Ph. Eur.) for the allowable method adjustment and are thus considered to be a result of a different separation method. Therefore, the pressure effect that follows method transfer from HPLC to UHPLC conditions should not be neglected even for gradient separations in ion exchange chromatography, as the resulting retention change may cause revalidation of the separation method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2019.03.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!