Introduction: Cetuximab, a monoclonal antibody to the epidermal growth factor receptor (EGFR), extends survival in combination with standard therapy in head and neck squamous cell carcinoma (HNSCC). However, as effects are modest, and patients experience side effects, a biomarker to predict resistance and personalize therapy is needed. Activation of signaling pathways downstream from receptor tyrosine kinases predicts resistance to such therapies in other cancers. The most common abnormalities downstream from EGFR in HNSCC are in the PI3K pathway, activated via loss of expression of the regulator PTEN, or via PI3K mutation. We studied whether PTEN and/or PI3K abnormalities predict resistance to cetuximab.

Methods: Tumor PTEN and PIK3CA/PI3K p110α were analyzed in samples from subjects treated on two trials of cetuximab-based therapy for patients with metastatic or recurrent HNSCC: E5397, a randomized trial of cisplatin plus placebo versus cisplatin plus cetuximab; and NCI-8070, a randomized trial of cetuximab plus sorafenib versus cetuximab. In situ quantification of PTEN and PI3K p110 α was performed using the AQUA™ method of quantitative immunofluorescence. PI3KCA hot spot mutations were determined with BEAMing.

Results: For E5397, in multivariable analysis, PTEN expressing/PIK3CA WT patients tended to improve PFS with cetuximab compared to placebo (N = 48; HR = 0.54, Wald p = 0.0502). High PTEN expression was significantly associated with superior PFS among patients treated on NCI-8070 (N = 37; HR = 0.35, p = 0.008).

Conclusion: Loss of PTEN expression may be associated with lack of benefit from cetuximab. This analysis is limited by small sample size, and PTEN as a potential predictive biomarker merits validation in larger sample sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855599PMC
http://dx.doi.org/10.1016/j.oraloncology.2019.02.026DOI Listing

Publication Analysis

Top Keywords

pten
9
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
predict resistance
8
pten pi3k
8
randomized trial
8
pten expression
8
expression associated
8

Similar Publications

The integral role of in brain function: from neurogenesis to synaptic plasticity and social behavior.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.

View Article and Find Full Text PDF

Different faces of autism: Patients with mutations in and genes.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

Autism spectrum disorder (ASD) is among the most common neurodevelopmental conditions in humans. While public awareness of the challenges faced by individuals with autism is steadily increasing, the underlying causes of abnormalities observed in ASD remains incompletely understood. The autism spectrum is notably broad, with symptoms that can manifest in various forms and degrees of severity.

View Article and Find Full Text PDF

Objectives: In recent years, the incidence and mortality rates of prostate cancer (PCa) have still not been significantly reduced and the mechanisms of tumor onset and progression are still not fully understood. The pathogenic mechanisms and upstream regulation of UBE2S expression in prostate cancer have not been elucidated.

Methods: Here, we performed bioinformatic analysis of public databases to reveal the expression of UBE2S in PCa and its association with Gleason score, tumor staging, biochemical recurrence, and survival.

View Article and Find Full Text PDF

Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!