Background: Recently, next-generation sequencing techniques have been applied for the detection of RNA secondary structures, which is referred to as high-throughput RNA structural (HTS) analyses, and many different protocols have been used to detect comprehensive RNA structures at single-nucleotide resolution. However, the existing computational analyses heavily depend on the experimental methodology to generate data, which results in difficulties associated with statistically sound comparisons or combining the results obtained using different HTS methods.
Results: Here, we introduced a statistical framework, reactIDR, which can be applied to the experimental data obtained using multiple HTS methodologies. Using this approach, nucleotides are classified into three structural categories, loop, stem/background, and unmapped. reactIDR uses the irreproducible discovery rate (IDR) with a hidden Markov model to discriminate between the true and spurious signals obtained in the replicated HTS experiments accurately, and it is able to incorporate an expectation-maximization algorithm and supervised learning for efficient parameter optimization. The results of our analyses of the real-life HTS data showed that reactIDR had the highest accuracy in the classification of ribosomal RNA stem/loop structures when using both individual and integrated HTS datasets, and its results corresponded the best to the three-dimensional structures.
Conclusions: We have developed a novel software, reactIDR, for the prediction of stem/loop regions from the HTS analysis datasets. For the rRNA structure analyses, reactIDR was shown to have robust accuracy across different datasets by using the reproducibility criterion, suggesting its potential for increasing the value of existing HTS datasets. reactIDR is publicly available at https://github.com/carushi/reactIDR .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439966 | PMC |
http://dx.doi.org/10.1186/s12859-019-2645-4 | DOI Listing |
Nano Lett
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70126, Bari, Italy.
The advent of high-throughput sequencing (HTS) technologies unlocked the complexity of the microbial world through the development of metagenomics, which now provides an unprecedented and comprehensive overview of its taxonomic and functional contribution in a huge variety of macro- and micro-ecosystems. In particular, shotgun metagenomics allows the reconstruction of microbial genomes, through the assembly of reads into MAGs (metagenome-assembled genomes). In fact, MAGs represent an information-rich proxy for inferring the taxonomic composition and the functional contribution of microbiomes, even if the relevant analytical approaches are not trivial and still improvable.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
Paris yunnanensis, also named as Rhizoma Paridis in the Chinese Pharmacopeia, is a perennial Chinese medicinal herb commonly grown in Southwest China. However, several viruses have been found infecting this plant in recent years. Using high-throughput sequencing (HTS) and Sanger sequencing, this study obtained the complete genome sequences of three capillovirus isolates and one potyvirus isolate.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany.
Front Microbiol
December 2024
Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
Evidence suggests that the gut microbiome may play a role in multiple sclerosis (MS). However, the majority of the studies have focused on gut bacterial communities; none have examined the fungal microbiota (mycobiota) in persons with pediatric-onset multiple sclerosis (POMS). We examined the gut mycobiota in persons with and without POMS through a cross-sectional examination of the gut mycobiota from 46 participants' stool samples (three groups: 18 POMS, 13 acquired monophasic demyelinating syndromes [monoADS], and 15 unaffected controls).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!