An artificial aging study of novel heat absorbers based on phase change materials (PCMs) prepared from recycled high-density polyethylene (HDPE), paraffin wax (PW), and expanded graphite (EG) was investigated. The optimal composition of PCMs contained 40 wt% HDPE, whereas the paraffin wax content ranged from 40 to 60 wt% and the expanded graphite content ranged from 5 to 15 wt%. PCMs were artificially aged through exposure to UV irradiation, enhanced temperature, and humidity. It was clearly demonstrated that the addition of EG to PCMs led to the suppression of PW leakage and improved the photooxidation stability of the PCMs during the aging process. The best performance was achieved by adding 15 wt% of EG to the PCMs. The sample shows a leakage of paraffin wax below 10%, retaining a melting enthalpy of PW within PCMs of 54.8 J/g, a thermal conductivity of 1.64 W/mK and the lowest photooxidation, characterized by an increase in the concentration of carbonyl groups from all investigated materials after artificial aging. Furthermore, PCMs mixed with EG exhibited good mechanical properties, even after 100 days of exposure to artificial aging. Finally, this work demonstrates a justification for the use of recycled plastics in the formation of PCMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479558PMC
http://dx.doi.org/10.3390/molecules24071217DOI Listing

Publication Analysis

Top Keywords

artificial aging
16
paraffin wax
12
pcms
9
heat absorbers
8
aging study
8
hdpe paraffin
8
expanded graphite
8
content ranged
8
ranged wt%
8
wt% pcms
8

Similar Publications

Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.

Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective.

Front Med

January 2025

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies.

View Article and Find Full Text PDF

Toward a Computable Phenotype for Determining Eligibility of Lung Cancer Screening Using Electronic Health Records.

JCO Clin Cancer Inform

January 2025

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL.

Purpose: Lung cancer screening (LCS) has the potential to reduce mortality and detect lung cancer at its early stages, but the high false-positive rate associated with low-dose computed tomography (LDCT) for LCS acts as a barrier to its widespread adoption. This study aims to develop computable phenotype (CP) algorithms on the basis of electronic health records (EHRs) to identify individual's eligibility for LCS, thereby enhancing LCS utilization in real-world settings.

Materials And Methods: The study cohort included 5,778 individuals who underwent LDCT for LCS from 2012 to 2022, as recorded in the University of Florida Health Integrated Data Repository.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!