Reactive lignin nanocapsules catalyze a pigmentation reaction to furnish an innovative type of sustainable polyvalent bioink. In this nanodevice, the pigment, vehicle, binder, and additive are included in a single confined spherical space. Bioinks with different shades of color, black, gray, yellow-like, pink-like, and red/brown hues, have been prepared by selecting the reactants and the pigmentation process. Lignin nanocapsules play multiple functions in the support and activation of the enzyme necessary for the synthesis of pigments. Lignin nanocapsules protected the melanin pigment from alkaline and UV-degradation treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b00198DOI Listing

Publication Analysis

Top Keywords

lignin nanocapsules
12
enzyme-lignin nanocapsules
4
nanocapsules sustainable
4
sustainable catalysts
4
catalysts vehicles
4
vehicles preparation
4
preparation unique
4
unique polyvalent
4
polyvalent bioinks
4
bioinks reactive
4

Similar Publications

Utilizing heterogeneity of lignin to diminish supercooling of phase change material nano-capsules with high latent heat.

J Colloid Interface Sci

December 2024

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Basic Research Center of Excellence for Ecological Security, Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Fatty acids, in particular, are valued as phase change materials (PCMs) for their non-toxic, biodegradable nature and thermal stability. However, the leakage and supercooling issues during phase transitions limit their application. Microencapsulation of PCMs, while improving thermal response, often leads to supercooling, complicating temperature regulation and increasing energy consumption.

View Article and Find Full Text PDF

Multiscale particle size functional pesticide carriers can provide more efficient protection for plants, but this protection is difficult to achieve via single-scale formulation technology. This study presents a novel one-step method for the preparation of lignin-based micro/nanocapsules with controllable proportions within a unified system. This strategy enables the adjustment of the proportion of nanocapsules to between 18.

View Article and Find Full Text PDF

Sustainable design and synthesis of high-performance lignin-based sunscreen ingredients.

Int J Biol Macromol

September 2024

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry of Chinese Academy of Sciences, 27 Taoyuan South Road, Yingze District, Taiyuan 030001, China.

The active ingredients most commonly employed in sunscreens are compounds containing one or two aromatic rings. Lignin is the most abundant renewable aromatic polymer that has the potential to yield low molecular weight aromatic chemicals when strategically depolymerized. Here, the UV absorbance of a series of monomeric and dimeric lignin model compounds (LMCs) were studied.

View Article and Find Full Text PDF

Reducing pesticide residues while extending their efficacy period is a critical challenge in the development of controlled-release pesticides. This study focuses on loading avermectin onto lignin-modified epoxy resin nanocarriers via the creation of photostable nanocapsules (NCs) for evaluating their efficacy against Plutella xylostella. This study also assesses the NCs' resistance to water scour on plant leaves by comparing them with traditional preparations.

View Article and Find Full Text PDF

Acid-catalyzed phenolation of lignin with tea polyphenol: Enhancing uv resistance and oxidation resistance for potential applications.

Int J Biol Macromol

May 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!