Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4-hydroxy-2-ketobutyrate, a key reaction in producing 1,3-propanediol (1,3-PDO) from glucose in a novel glycerol-independent metabolic pathway. To this end, a computation-based rational approach is used to change the substrate specificity of SerC from l-phosphoserine to l-homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerC , is successfully improved by 4.2-fold in comparison to the wild type when l-homoserine is used as the substrate, while its activity toward the natural substrate l-phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3-PDO production, the "homoserine to 1,3-PDO" pathway is constructed in E. coli by coexpression of SerC with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L 1,3-PDO in fed-batch fermentation, which is 13-fold higher than the wild-type strain and represents an important step forward to realize the promise of the glycerol-independent synthetic pathway for 1,3-PDO production from glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201900003DOI Listing

Publication Analysis

Top Keywords

phosphoserine aminotransferase
8
production glucose
8
13-pdo production
8
engineering phosphoserine
4
aminotransferase increases
4
increases conversion
4
conversion l-homoserine
4
l-homoserine 4-hydroxy-2-ketobutyrate
4
4-hydroxy-2-ketobutyrate glycerol-independent
4
pathway
4

Similar Publications

PSAT1 promotes the progression of colorectal cancer by regulating Hippo-YAP/TAZ-ID1 axis via AMOT.

Mol Cell Biochem

December 2024

Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.

Colorectal cancer (CRC) ranks third for morbidity and second for mortality among all digestive malignant tumors worldwide, but its pathogenesis remains not entirely clear. Bioinformatic analyses were performed to find out important biomarkers for CRC. For validation, reverse transcription-quantitative PCR, western blotting, and immunohistochemistry were performed.

View Article and Find Full Text PDF

The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in serine biosynthesis and its activity promotes various biochemical processes, including one-carbon metabolism. It also directly generates α-ketoglutarate (α-KG), a Kreb cycle intermediate and epigenetic-regulating metabolite.

View Article and Find Full Text PDF

Interplay between acetylation and ubiquitination controls PSAT1 protein stability in lung adenocarcinoma.

Commun Biol

October 2024

Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Serine is essential to maintain maximal growth and proliferation of cancer cells by providing adequate intermediate metabolites and energy. Phosphoserine aminotransferase 1 (PSAT1) is a key enzyme in de novo serine synthesis. However, little is known about the mechanisms underlying PSAT1 degradation.

View Article and Find Full Text PDF

PSAT1 is upregulated by METTL3 to attenuate high glucose-induced retinal pigment epithelial cell apoptosis and oxidative stress.

Diagn Pathol

October 2024

Department of Ophthalmology, Yan'an People's Hospital, No. 16 Qilipu Street, Baota District, Yan'an City, Shaanxi province, 716000, China.

Background: Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, and a significant cause of visual impairment and blindness in adults. Phosphoserine aminotransferase 1 (PSAT1) is an enzyme participating in serine synthesis, which might improve insulin signaling and insulin sensitivity. Furthermore, it has been reported that the m6A methylation in mRNA controls gene expression under many physiological and pathological conditions.

View Article and Find Full Text PDF

Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis by glutaminase (GLS). However, this metabolic addiction can be lost in the tumour microenvironment, rendering GLS inhibitors ineffective in the clinic. Here we show that glutamine-addicted breast cancer cells adapt to chronic glutamine starvation, or GLS inhibition, via AMPK-mediated upregulation of the serine synthesis pathway (SSP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!