A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental and computational studies on ruthenium(ii) bis-diimine complexes of N,N'-chelate ligands: the origin of changes in absorption spectra upon oxidation and reduction. | LitMetric

This work presents an interpretation of the origin of changes in absorption spectra upon one-electron oxidation and reduction of two ruthenium polypyridyl complexes based on a combination of UV-Vis spectroelectrochemical experiments and theoretical calculations using the Gaussian 09 program. A bis-chelating ligand containing a p-bromobenzoylthiourea unit connected to 1,10-phenanthroline (phen-p-BrBT) has been prepared. Complexation of phen-p-BrBT to ruthenium bis-diimine centres, Ru(N-N) [N-N = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen)], affords octahedral Ru(ii) tris-diimine complexes that are synthesised and structurally characterised. The two complexes exhibit similar MLCT bands and electronic energy levels owing to the similar electronic structures of the bpy and phen ligands. However, [Ru(phen)(phen-p-BrBT)] exhibits a slightly broader visible region MLCT (metal-to-ligand-charge transfer) band than [Ru(bpy)(phen-p-BrBT)] as expected from a slightly more delocalised π-electron system in the phen diimine ligands. In addition, the π→π* absorption in the UV is blue-shifted for [Ru(phen)(phen-p-BrBT)] relative to that for [Ru(bpy)(phen-p-BrBT)], because of greater stabilisation of the bpy HOMO relative to that of phen. The extra C-C bond in phen produces greater delocalisation of electron density leading to a blue-shift in the π→π* transition. The MLCT band is blue-shifted and diminished in intensity upon oxidation due to stabilisation of the Ru d-orbitals by removal of one electron. A new broad absorption band appears in the UV region upon reduction. The new transition is attributed to a blue-shift of the first MLCT transition for [Ru(bpy)(phen-p-BrBT)] and a red-shift of the second MLCT transition for [Ru(phen)(phen-p-BrBT)]. The new transitions originate from destabilisation or stabilisation of the ligand LUMO orbitals relative to the Ru d-orbitals. A red-shift of the UV band in the initial complex also contributes to the new band produced upon reduction of [Ru(bpy)(phen-p-BrBT)]. The new band does not involve an n(C[double bond, length as m-dash]S) →π* transition. Although both complexes show subtle differences in behaviour, their spectral changes are distinct, and the origin of changes in their absorption spectra upon oxidation and reduction is successfully interpreted.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp05016cDOI Listing

Publication Analysis

Top Keywords

origin changes
12
changes absorption
12
absorption spectra
12
oxidation reduction
12
spectra oxidation
8
mlct transition
8
band
6
complexes
5
absorption
5
reduction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!