Radioactive gold-198 is a useful diagnostic and therapeutic agent. Gold in the form of nanoparticles possesses even more exciting properties. This work aimed at arabinoxylan-mediated synthesis and biodistribution study of radioactive gold nanoparticles (AuNPs). The particles were synthesized by mixing suspension of arabinoxylan with HAuCl without use of any additional reducing and stabilizing agents. An aqueous suspension of arabinoxylan was added to a HAuCl solution, which resulted in reduction of Au to AuNPs. Biodistribution was studied in vitro and in rabbit. The particles having exceptional stability were readily formed. Highest radioactivity was recorded in spleen after 3 h followed by liver, heart, kidney, and lungs after i.v. administration. After 24 h, the activity was not detectable in the spleen; it accumulated in the liver. However, after oral administration, the activity mainly accumulated in the colon. In serum proteins, the distribution was α-globulin 6.5%, α-globulin ~ 2%, β-globulin ~ 1%, γ-globulin 0.7%, and albumin 0.7% of the administered dose. This indicates a low protein binding implying high bioavailability of the particles. The cytotoxicity study showed that the particles were inactive against HeLa cell line and Agrobacteriumtumefaciens. Highly stable AuNPs reported in this work have the potential for targeting the colon. They show affinity for globulins, the property that can be used in the study of the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-019-01700-yDOI Listing

Publication Analysis

Top Keywords

synthesis biodistribution
8
biodistribution study
8
reducing stabilizing
8
suspension arabinoxylan
8
arabinoxylan haucl
8
study
4
study biocompatible
4
biocompatible 198au
4
198au nanoparticles
4
nanoparticles arabinoxylan
4

Similar Publications

Brain distribution study of [C]-Riluzole following intranasal administration in mice.

Int J Pharm

January 2025

Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China. Electronic address:

Amyotrophic lateral sclerosis (ALS) presents a substantial challenge due to its complex nature, limited effective treatment options, and modest benefits from current therapies in slowing disease progression. This study explores the potential of intranasal delivery to enhance the CNS delivery of riluzole (RLZ), a standard ALS treatment which is subject to blood-brain barrier efflux mechanisms. Additionally, the impact of elacridar (ELC), an efflux pump inhibitor, on IN RLZ CNS bioavailability was examined.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!