Purpose: Cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) pathways are crucial for cancer progression. However, synergistic interactions between CSC and EMT are not clear in non-small cell lung cancer (NSCLC). The objective of this study was to investigate CSC markers such as CD44, NANOG, and ALDH1 expression and its correlation with EMT markers in NSCLC patients. Its association with survival was also determined.

Methods: CD44, NANOG, and ALDH1 protein expression was evaluated in 267 resected NSCLC and its correlation with e-cadherin, β-catenin, p120 catenin, vimentin, SNAIL, and TWIST expressions was determined based on immunohistochemical and mRNA expression data from The Cancer Genome Atlas (TCGA) database. Survival analyses also were performed based on immunohistochemistry and mRNA expression data from Gene Expression Omnibus dataset.

Results: ALDH1 expression in lung adenocarcinoma was positively correlated with the epithelial-like phenotype, low vimentin and low TWIST in immunohistochemical and mRNA expression data. NANOG and ALDH1 expressions measured by immunohistochemical and mRNA expression profiling data of adenocarcinomas were associated with a favorable prognosis. ALDH1 was an independent favorable prognostic marker for overall survival or recurrence-free survival in adenocarcinoma (P = 0.026 and P = 0.033, respectively). The epithelial-like phenotype expressing P120-catenin and beta-catenin was associated with a favorable prognosis; however, the TWIST-expressing mesenchymal-like phenotype was correlated with an unfavorable prognosis.

Conclusions: NANOG and ALDH1 protein or mRNA expression showed improved prognosis in adenocarcinoma alone. ALDH1 expression correlated with an epithelial-like phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-019-02906-2DOI Listing

Publication Analysis

Top Keywords

mrna expression
24
aldh1 expression
16
epithelial-like phenotype
16
expression data
16
nanog aldh1
16
favorable prognosis
12
immunohistochemical mrna
12
expression
11
aldh1
8
lung adenocarcinoma
8

Similar Publications

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Cytoplasmic mRNA decay and quality control machineries in eukaryotes.

Nat Rev Genet

January 2025

Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.

mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!