Poly-γ-glutamic acid (γ-PGA) is an extracellularly produced biodegradable polymer, which has been widely used as agricultural fertilizer, mineral fortifier, cosmetic moisturizer, and drug carrier. This study firstly discovered that lichenysin, as a biosurfactant, showed the capability to enhance γ-PGA production in Bacillus licheniformis. The exogenous addition of lichenysin improved the γ-PGA yield up to 17.9% and 21.9%, respectively, in the native strain B. licheniformis WX-02 and the lichenysin-deficient strain B. licheniformis WX02-ΔlchAC. The capability of intracellular biosynthesis of lichenysin was positively correlated with γ-PGA production. The yield of γ-PGA increased by 25.1% in the lichenysin-enhanced strain B. licheniformis WX02-Psrflch and decreased by 12.2% in the lichenysin-deficient strain WX02-ΔlchAC. Analysis of key enzyme activities and gene expression in the TCA cycle, precursor glutamate synthesis, and γ-PGA synthesis pathway revealed that the existence of lichenysin led to increased γ-PGA via shifting the carbon flux in the TCA cycle towards glutamate and γ-PGA biosynthetic pathways, minimizing by-product formation, and facilitating the uptake of extracellular substrates and the polymerization of glutamate to γ-PGA. Insight into the mechanisms of enhanced production of γ-PGA by lichenysin would define the essential parameters involved in γ-PGA biosynthesis and provide the basis for large-scale production of γ-PGA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-019-09750-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!