PolyADP-ribosylation (PARylation) is a posttranslational modification that is involved in the various cellular functions including DNA repair, genomic stability, and transcriptional regulation. PARylation is catalyzed by the poly(ADP-ribose) polymerase (PARP) family proteins, which mainly recognize damaged DNA and initiate repair processes. PARP inhibitors are expected to be novel anticancer drugs for breast and ovarian cancers having mutation in tumor suppressor genes. However the structure of intact (full-length) PARP is not yet known. We have produced and purified the full-length human PARP1 (h-PARP1), which is the major family member of PARPs, and analyzed it with single particle electron microscopy. The electron microscopic images and the reconstructed 3D density map revealed a dimeric configuration of the h-PARP1, in which two ring-shaped subunits are associated with two-fold symmetry. Although the PARP1 is hypothesized to form a dimer on damaged DNA, the quaternary structure of this protein is still controversial. The present result would provide the first structural evidence of the dimeric structure of PARP1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435018 | PMC |
http://dx.doi.org/10.2142/biophysico.16.0_59 | DOI Listing |
Commun Biol
January 2025
Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations.
View Article and Find Full Text PDFVaccine
January 2025
State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China. Electronic address:
Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications.
View Article and Find Full Text PDFJ Med Virol
February 2025
CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases.
View Article and Find Full Text PDFHLA
February 2025
Temple University Hospital Philadelphia, Philadelphia, Pennsylvania, USA.
The full-length sequence of HLA-DQB1*06:304N covers the 5'-untranslated region (UTR), all introns and exons, and the 3' UTR.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!