A chloride ring is an ancient evolutionary innovation mediating the assembly of the collagen IV scaffold of basement membranes.

J Biol Chem

Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232. Electronic address:

Published: May 2019

AI Article Synopsis

  • Collagen IV scaffold is a key component of the basement membrane that supports multicellularity and tissue evolution, beginning with the assembly of protochains inside cells and their subsequent secretion.
  • The study focuses on how chloride ions facilitate the assembly of collagen IV protomers into stable hexamers through a noncollagenous domain (NC1), which is essential for structural integrity.
  • Findings reveal that a specific chloride ring stabilizes the hexamer structure and is conserved throughout evolutionary history, providing insights for future research into collagen scaffolds and potential therapies for related diseases.

Article Abstract

Collagen IV scaffold is a principal component of the basement membrane (BM), a specialized extracellular matrix that is essential for animal multicellularity and tissue evolution. Scaffold assembly begins with the trimerization of α-chains into protomers inside the cell, which then are secreted and undergo oligomerization outside the cell. For the ubiquitous scaffold composed of α1- and α2-chains, both intracellular and extracellular stages are mediated by the noncollagenous domain (NC1). The association of protomers is chloride-dependent, whereby chloride ions induce interactions of the protomers' trimeric NC1 domains leading to NC1 hexamer formation. Here, we investigated the mechanisms, kinetics, and functionality of the chloride ion-mediated protomer assembly by using a single-chain technology to produce a stable NC1 trimer comprising α1, α2, and α1 NC1 monomers. We observed that in the presence of chloride, the single-chain NC1-trimer self-assembles into a hexamer, for which the crystal structure was determined. We discovered that a chloride ring, comprising 12 ions, induces the assembly of and stabilizes the NC1 hexamer. Furthermore, we found that the chloride ring is evolutionarily conserved across all animals, first appearing in cnidarians. These findings reveal a fundamental role for the chloride ring in the assembly of collagen IV scaffolds of BMs, a critical event enabling tissue evolution and development. Moreover, the single-chain technology is foundational for generating trimeric NC1 domains of other α-chain compositions to investigate the α121, α345, and α565 collagen IV scaffolds and to develop therapies for managing Alport syndrome, Goodpasture's disease, and cancerous tumor growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527180PMC
http://dx.doi.org/10.1074/jbc.RA119.007426DOI Listing

Publication Analysis

Top Keywords

chloride ring
16
assembly collagen
8
collagen scaffold
8
tissue evolution
8
trimeric nc1
8
nc1 domains
8
nc1 hexamer
8
single-chain technology
8
collagen scaffolds
8
chloride
7

Similar Publications

Reactions of Tertiary Aliphatic Cations with Silylated Alkynes: Substitution, Cyclization and Unexpected C-H Activation Products.

Chemistry

January 2025

Université de Rennes 1, Chemistry, Equipe CORINT, Institut des Sciences Chimiques de Rennes, Université de Rennes 1 - UMR 6226 CNRS, Bâtiment 10A, Bureau 158, Avenue du Général Leclerc, 35042, Rennes, FRANCE.

Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction.

View Article and Find Full Text PDF

Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.

View Article and Find Full Text PDF

Ferric chloride mediated dearomative spirocyclization of biaryl ynones for the synthesis of new series of densely functionalized 3,3-spiroindanone derivatives has been reported. This study is the first to describe the regioselective synthesis of a five-membered ring from biaryl ynones. The scope of the reaction is broad and the spirocyclic products were obtained in moderate to good yields (up to 87 %) and with high stereoselectivities.

View Article and Find Full Text PDF

: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.

View Article and Find Full Text PDF

Changes in Growth and Metabolic Profile of Georgi in Response to Sodium Chloride.

Biology (Basel)

December 2024

Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.

Georgi is a valuable medicinal plant of the family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!