New tetrazole derivatives of chitosan with low, moderate, and high degrees of substitution were obtained using a novel approach, i.e. metal-catalyzed 1,3-dipolar cycloaddition of azide ion to cyanoethyl chitosan in water - the most straightforward, selective and preparatively convenient route to tetrazole chitosan derivatives. Ionic gelation of these tetrazole derivatives with sodium tripolyphosphate resulted in nanoparticles with an apparent hydrodynamic diameter of 100-800 nm and ζ-potential of 22-57 mV. The tetrazole derivatives of chitosan and their nanoparticles were tested as catalysts of the aldol reaction between p-chlorobenzaldehyde and acetone. The tetrazole derivatives have been found to possess better catalytic properties than the corresponding nanoparticles. The obtained data indicate that the tetrazole-chitosan polymers exhibit high catalytic activity in aldol reaction, and these catalysts are among the best studied so far. Tetrazole derivatives and their nanoparticles were also tested as antibacterial agents. The in vitro antibacterial activity against S. aureus and E. coli of the tetrazole-chitosan-based nanoparticles is much more than the activity of the corresponding tetrazole-chitosan polymers, and their activity is comparable with that of antibiotics ampicillin and gentamicin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.03.153 | DOI Listing |
ACS Med Chem Lett
January 2025
NEUROFARBA Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad 500090, Telangana.
Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland.
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!