Cooper instability generated by attractive fermion-fermion interaction in the two-dimensional semi-Dirac semimetals.

J Phys Condens Matter

Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China.

Published: July 2019

Cooper instability (CI) associated with superconductivity in the two-dimensional semi-Dirac semimetals is attentively studied in the presence of attractive Cooper-pairing interaction, which is the projection of an attractive fermion-fermion interaction. Performing the standard renormalization group analysis shows that the Cooper theorem is violated at zero chemical potential but instead CI can be generated only if the absolute strength of fermion-fermion coupling exceeds certain critical value and transfer momentum is restricted to a confined region, which is determined by the initial conditions. Rather, the Cooper theorem would be instantly restored once a finite chemical potential is introduced and thus a chemical potential-tuned phase transition is expected. Additionally, we briefly examine the effects of impurity scatterings on the CI at zero chemical potential, which in principle are harmful to CI although they can enhance the density of states of systems. Furthermore, the influence of competition between a finite chemical potential and impurities upon the CI is also simply investigated. These results are expected to provide instructive clues for exploring unconventional superconductors in the kinds of semimetals.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab142dDOI Listing

Publication Analysis

Top Keywords

chemical potential
16
cooper instability
8
attractive fermion-fermion
8
fermion-fermion interaction
8
two-dimensional semi-dirac
8
semi-dirac semimetals
8
cooper theorem
8
finite chemical
8
chemical
5
cooper
4

Similar Publications

The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics.

Database (Oxford)

January 2025

Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.

The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.

View Article and Find Full Text PDF

The scope of this study was to assess the ototoxic effects and general health of farmers exposed to pesticides in the Pontal do Paranapanema region, SP, Brazil. Participants of both sexes aged 18-40, 40-60 and >60 years were allocated into two groups: Non-Exposed Group (NEG) and Occupationally Exposed Group (OEG). A questionnaire of exposure and health, meatoscopy, pure tone audiometry, logoaudiometry and immittanciometry were assessed.

View Article and Find Full Text PDF

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

The assessment of humans indirectly exposed to chemicals via the environment (HvE) is an assessment element of the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation. The European Union System for the Evaluation of Substances (EUSES) is the default screening tool, aimed at prioritizing chemicals for further refinement/higher tier assessment. This review summarizes the approach used in EUSES, evaluates the state of the science in human exposure modeling via the environment, and identifies areas for further research to strengthen the confidence and applicability of EUSES for assessing HvE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!