Thiosemicarbazones (TSC) are a subclass of iron-chelating agents that are believed to have an anticancer activity. The high potential for the application of this compound class can be illustrated by a fact that three TSC have entered clinical trials. The ability to chelate metal ions results in several biochemical changes in the cellular metabolism and growth. An important factor that determines the antitumor activity of TSC is a level of iron regulatory proteins and the antioxidant potential that is specific for each type of cancer cell. However, despite the increasing interest in TSC, their mechanism of anticancer activity is still unclear. For a more effective and rational design, it is crucial to determine and describe the abovementioned issues. In this report, we describe a series of new TSC that are designed on the four main structural scaffolds. The anticancer activity of these compounds was evaluated against a panel of cancer cell lines including colon and breast cancers and gliomas. Special attention was paid to the metal-dependent proteins. The impact of the tested TSC on the cell cycle and redox homeostasis was also determined. These results confirm a p53-independent mechanism of apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2019.03.027DOI Listing

Publication Analysis

Top Keywords

anticancer activity
16
cancer cell
8
tsc
6
anticancer
4
activity thiosemicarbazones
4
thiosemicarbazones based
4
based di-2-pyridine
4
di-2-pyridine ketone
4
ketone quinoline
4
quinoline moiety
4

Similar Publications

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Peripheral neuropathy: from guidelines to clinical practise.

Curr Opin Oncol

January 2025

Department of Hematology, Oncology and Palliative Medicine, Ernst von Bergmann Hospital Potsdam, Potsdam.

Purpose Of Review: Chemotherapy-induced peripheral neuropathy (CIPN) is a substantial adverse effect of anticancer therapy. No effective preventive strategies are established in clinical routine, although some forms of cryotherapy or compression therapy seem to be promising. CIPN is difficult to grade objectively and has mostly relied on a clinician- or patient-based rating that is subjective and not easily reproducible.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!