Modelling chromosome structural and copy number changes to understand cancer genomes.

Curr Opin Genet Dev

Department of Molecular Genetics, University of Kaiserslautern, Germany. Electronic address:

Published: February 2019

Cancer cells differ from healthy cells by genetic information that is massively altered not only by point mutations and small insertions and deletions, but also by large scale changes such as chromosomal rearrangements as well as gains and losses of individual chromosomes or entire chromosome sets. How exactly large-scale chromosomal abnormalities contribute to tumorigenesis has been difficult to study. Remarkable progress has been recently made thanks to in vitro models that mimic large-scale chromosomal aberrations and allow their systematic analysis. The obtained findings reveal that genomic alterations strongly affect the cellular physiology and, importantly, instigate further genomic instability. This suggests that these model systems might provide novel insights by recapitulating the processes that occur during tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2019.02.005DOI Listing

Publication Analysis

Top Keywords

large-scale chromosomal
8
modelling chromosome
4
chromosome structural
4
structural copy
4
copy number
4
number changes
4
changes understand
4
understand cancer
4
cancer genomes
4
genomes cancer
4

Similar Publications

Convergent pairs of highly transcribed genes restrict chromatin looping in Dictyostelium discoideum.

Nucleic Acids Res

January 2025

Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.

Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development.

View Article and Find Full Text PDF

Typhoid fever is a significant public health problem endemic in Southeast Asia and Sub-Saharan Africa. Antimicrobial treatment of typhoid is however threatened by the increasing prevalence of antimicrobial resistant (AMR) Typhi, especially in the globally successful lineage (4.3.

View Article and Find Full Text PDF

Large-scale evaluation of outcomes after a genetic diagnosis in children with severe developmental disorders.

Genet Med Open

October 2024

Department of Clinical and Biomedical Sciences, Medical School, University of Exeter, St Luke's Campus, Exeter, United Kingdom.

Purpose: We sought to evaluate outcomes for clinical management after a genetic diagnosis from the Deciphering Developmental Disorders study.

Methods: Individuals in the Deciphering Developmental Disorders study who had a pathogenic/likely pathogenic genotype in the DECIPHER database were selected for inclusion ( = 5010). Clinical notes from regional clinical genetics services notes were reviewed to assess predefined clinical outcomes relating to interventions, prenatal choices, and information provision.

View Article and Find Full Text PDF

Deep learning classification models based on Convolutional Neural Networks (CNNs) are increasingly used in population genetic inference for detecting signatures of natural selection. Prevailing detection methods treat the design of the classifier as a discrete phase, assuming that high classification accuracy is the sole prerequisite for precise detection. This frequently steers method development toward classification-driven optimizations that can inadvertently impede detection.

View Article and Find Full Text PDF

Epigenetics in the modern era of crop improvements.

Sci China Life Sci

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!