The evolution of xylem vessels from tracheids is put forward as a key innovation that boosted hydraulic conductivity and photosynthetic capacities in angiosperms. Yet, the role of xylem anatomy and interconduit pits in hydraulic performance across vesselless and vessel-bearing angiosperms is incompletely known, and there is a lack of functional comparisons of ultrastructural pits between species with different conduit types. We assessed xylem hydraulic conductivity and vulnerability to drought-induced embolism in 12 rain forest species from New Caledonia, including five vesselless species, and seven vessel-bearing species with scalariform perforation plates. We measured xylem conduit traits, along with ultrastructural features of the interconduit pits, to assess the relationships between conduit traits and hydraulic efficiency and safety. In spite of major differences in conduit diameter, conduit density, and the presence/absence of perforation plates, the species studied showed similar hydraulic conductivity and vulnerability to drought-induced embolism, indicating functional similarity between both types of conduits. Interconduit pit membrane thickness (Tm) was the only measured anatomical feature that showed a relationship to significant vulnerability to embolism. Our results suggest that the incidence of drought in rain forest ecosystems can have similar effects on species bearing water-conducting cells with different morphologies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erz133DOI Listing

Publication Analysis

Top Keywords

perforation plates
12
hydraulic conductivity
12
hydraulic efficiency
8
efficiency safety
8
vessel-bearing species
8
species scalariform
8
scalariform perforation
8
interconduit pits
8
conductivity vulnerability
8
vulnerability drought-induced
8

Similar Publications

This paper experimentally investigates the impact response of composite laminates made with conventional and bio-based epoxy resin. Drop tower impact tests were conducted at varying energy levels, including repeated low-energy impacts, to evaluate perforation resistance. The laminates' residual strength and damage tolerance were assessed using the Damage Index (DI) and by analysing the resonance frequency variations through the Impulse Excitation Technique (IET).

View Article and Find Full Text PDF

Odontogenic cutaneous fistulas are abnormal connections between the oral cavity and skin, often mistaken for skin infections. They typically result from dental infections but may also arise from salivary gland issues, tumors, or congenital anomalies. Accurate diagnosis is essential to prevent complications like infection, osteomyelitis, and discomfort.

View Article and Find Full Text PDF

Introduction: Congenital vertebral malformations are common developmental abnormalities in screw-tailed brachycephalic dog breeds. Subsequent vertebral instability and/or vertebral canal stenosis caused by these malformations can lead to spinal cord compression manifesting in pain, paraparesis, ataxia and/or paralysis. Various methods for spinal stabilization are in common use.

View Article and Find Full Text PDF

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

The authors present two cases of mouth floor hemorrhage consequences of implant placement within the atrophic anterior mandible. In one patient, the implant placement was associated with the guided bone regeneration (GBR) technique. This serious complication has been widely described in the literature, especially in the anterior mandible area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!