Osteosarcoma is the most common type of bone malignancies with a poor prognosis. In recent years, targeted therapy has shown great potential in the treatment of osteosarcoma, and more effective therapeutic targets for this disease need to be developed. APLNR is a seven transmembrane G-protein-coupled receptor expressed widely in multiple tissues. As has been reported, APLNR is involved in various physiological and pathological processes. Although APLNR plays a role in the development and progression of multiple tumors, the potential role of APLNR in osteosarcoma, a highly malignant tumor, remains unclear. Here, we reported that APLNR expression was correlated positively with clinical features including tumor size and stage of osteosarcoma. We found that APLNR knockdown inhibited the proliferation and invasion of osteosarcoma cells in vitro. In addition, APLNR could promote the progression and metastasis of osteosarcoma in mice. Collectively, this study showed the potential link between APLNR and osteosarcoma and suggested APLNR as a novel therapeutic target for osteosarcoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CAD.0000000000000785 | DOI Listing |
J Adv Res
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China. Electronic address:
Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria.
Multiple sclerosis (MS) is a chronic neurodegenerative disorder involving demyelination. The cuprizone model is commonly used to study MS by inducing oligodendrocyte stress and demyelination. The subventricular zone (SVZ) plays a key role in neurogenesis, while the neuronal/glial antigen 2 (NG2) is a marker for immature glial cells, involved in oligodendrocyte differentiation.
View Article and Find Full Text PDFClin Transl Med
December 2024
Department of Pathology of Sir Run Run Shaw Hospital, and Department of Pharmacology,and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
Int J Biol Macromol
December 2024
Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:
Neurosci Biobehav Rev
January 2025
Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México. Electronic address:
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!