Low-power laser pulses of 6 ns duration (1064 nm wavelength) have been used to create plasma in an aqueous solution of plasmid DNA (pUC19). Thermal energy electrons and OH radicals in the plasma induce strand breakages in DNA, including double strand breaks and possible base oxidation/base degradation. The time evolution of these modifications shows that it takes barely 30 s for damage to DNA to occur. Addition of physiologically relevant concentrations of a salt (NaCl) significantly inhibits such damage. We rationalize such inhibition using simple electrostatic considerations. The observation that DNA damage is induced by plasma-induced photolysis of water suggests implications beyond studies of DNA and opens new vistas for using simple nanosecond lasers to probe how ultralow energy radiation may affect living matter under physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b00650DOI Listing

Publication Analysis

Top Keywords

strand breaks
8
thermal energy
8
dna
6
strong strand
4
breaks dna
4
dna induced
4
induced thermal
4
energy particles
4
particles electrostatic
4
electrostatic inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!