High refractive index dielectric nanoresonators are attracting much attention due to their ability to control both electric and magnetic components of light. Due to the combination of confined modes with reduced absorption losses, they have recently been proposed as an alternative to nanoplasmonic biosensors. In this context, we study the use of semirandom silicon nanocylinder arrays, fabricated with simple and scalable colloidal lithography for the efficient and reliable detection of biomolecules in biological samples. Interestingly, electric and magnetic dipole resonances are associated with two different transduction mechanisms: extinction decrease and resonance red shift. By contrasting both observables, we identify clear advantages in tracking changes in the extinction magnitude. Our data demonstrate that, despite its simplicity, the proposed platform is able to detect prostate-specific antigen in human serum with limits of detection meeting clinical needs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b00572 | DOI Listing |
Sci Adv
January 2025
Department of Physics, Princeton University, Princeton, NJ 08544, USA.
Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.
The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Michigan, Department of Physics, Ann Arbor, Michigan 48109, USA.
Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.
View Article and Find Full Text PDFRadiol Artif Intell
January 2025
Human Phenome Institute and Shanghai Pudong Hospital, Fudan University, Shanghai, China.
. The released CMRxRecon2024 dataset is currently the largest and most protocol-diverse publicly available k-space dataset including multi-modality and multi-view cardiac MRI data from 330 healthy volunteers, and each one covers standardized and commonly used clinical protocols. ©RSNA, 2025.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, P.R. China.
Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!