Introduction: Lung fluid clearance is essential for successful postnatal pulmonary adaptation. The epithelial sodium channel (ENaC) and Na-K-ATPase, induced by serum- and glucocorticoid-inducible kinase 1 (SGK1) as well as aquaporins (AQP), represent key players in the switch from fetal lung fluid secretion to absorption and in early postnatal lung fluid balance. Birth stress, including a surge in catecholamines, promotes pulmonary adaptation, likely through the augmentation of epithelial sodium reabsorption.

Objectives: We sought to determine the changes in the airway gene expression of molecules vital to epithelial sodium transport during early pulmonary adaptation, and the association with birth stress reflected in the norepinephrine concentration in the cord blood in humans.

Methods: We included 70 term newborns: 28 born via vaginal delivery and 42 via elective cesarean section. We determined the norepinephrine concentrations in the cord blood using tandem mass spectrometry and collected nasal epithelial cell samples at 2 min, 1 h, and 24 h postnatally to quantify ENaC, Na-K-ATPase, AQP5, and SGK1 mRNAs using RT-PCR.

Results: The molecular gene expression involved in airway epithelium sodium transport changed markedly within the first hour postnatally. Newborns born via elective cesarean section exhibited a lower expression of ENaC, Na-K-ATPase, and SGK1. Significant correlations existed between the expressions of ENaC, Na-K-ATPase, and SGK1, and the concentration of norepinephrine in the cord blood.

Conclusions: The association of ENaC, Na-K-ATPase, and SGK1 expression with the cord blood norepinephrine concentration points to the importance of birth stress in promoting lung fluid clearance during early postnatal pulmonary adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ppul.24288DOI Listing

Publication Analysis

Top Keywords

enac na-k-atpase
20
epithelial sodium
16
birth stress
16
lung fluid
16
pulmonary adaptation
16
gene expression
12
cord blood
12
na-k-atpase sgk1
12
fluid clearance
8
postnatal pulmonary
8

Similar Publications

Huashi baidu granule alleviates inflammation and lung edema by suppressing the NLRP3/caspase-1/GSDMD-N pathway and promoting fluid clearance in a porcine reproductive and respiratory syndrome (PRRS) model.

J Ethnopharmacol

January 2025

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China. Electronic address:

Ethnopharmacological Relevance: Huashi Baidu Granule (HSBDG), a traditional Chinese medicine (TCM), is used for treating coronavirus disease 2019 (COVID-19). Porcine reproductive and respiratory syndrome (PRRS) is considered the "COVID-19" for swine. According to the TCM theory, "dampness" is the main pathogenic factor in COVID-19 and PRRS, and "Huashi" means that this formula is good at removing "dampness".

View Article and Find Full Text PDF

Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At prehypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).

View Article and Find Full Text PDF

Inhibition the ubiquitination of ENaC and Na,K-ATPase with erythropoietin promotes alveolar fluid clearance in sepsis-induced acute respiratory distress syndrome.

Biomed Pharmacother

May 2024

Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China. Electronic address:

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS.

View Article and Find Full Text PDF

PEBP4 deficiency aggravates LPS-induced acute lung injury and alveolar fluid clearance impairment via modulating PI3K/AKT signaling pathway.

Cell Mol Life Sci

March 2024

Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China.

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models.

View Article and Find Full Text PDF

The aim of the current work was to examine for the first time the nephropreventive capacity of seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that supplementation for 28 days (40 mg/kg b.w.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!