Purpose: Lung motion phantoms used to validate radiotherapy motion management strategies have fairly simplistic designs that do not adequately capture complex phenomena observed in human respiration such as external and internal deformation, variable hysteresis and variable correlation between different parts of the thoracic anatomy. These limitations make reliable evaluation of sophisticated motion management techniques quite challenging. In this work, we present the design and implementation of a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers.
Methods: An in-house-designed lung module, made from natural latex foam was inserted inside the outer shell of a commercially available lung phantom (RSD, Long Beach, CA, USA). Radiopaque markers were placed on the external surface and embedded into the lung module. Two independently programmable high-precision linear motion actuators were used to generate primarily anterior-posterior (AP) and primarily superior-inferior (SI) motion in a reproducible fashion in order to enable (a) variable correlation between the displacement of interior volume and the exterior surface, (b) independent changes in the amplitude of the AP and SI motions, and (c) variable hysteresis. The ability of the phantom to produce complex and variable motion accurately and reproducibly was evaluated by programming the two actuators with mathematical and patient-recorded lung tumor motion traces, and recording the trajectories of various markers using kV fluoroscopy. As an example application, the phantom was used to evaluate the performance of lung motion models constructed from kV fluoroscopy and 4DCT images.
Results: The phantom exhibited a high degree of reproducibility and marker motion ranges were reproducible to within 0.5 mm. Variable correlation was observed between the displacements of internal-internal and internal-external markers. The SI and AP components of motion of a specific marker had a correlation parameter that varied from -11 to 17. Monitoring a region of interest on the phantom's surface to estimate internal marker motion led to considerably lower uncertainties than when a single point was monitored.
Conclusions: We successfully designed and implemented a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510612 | PMC |
http://dx.doi.org/10.1002/mp.13507 | DOI Listing |
Acta Bioeng Biomech
June 2024
2Daping Hospital, Army Medical Center, Chongqing, China.
: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2025
JD Hamilton Consulting, Brighton, Michigan, USA.
Background: Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.
Methods: We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations.
Cancers (Basel)
January 2025
Department of Radiotherapy, Research Centre for Digital Medicine, VUB-UZ Brussel, 1090 Brussels, Belgium.
: Inadequate dosing and respiratory motion contribute to local recurrence for oligometastatic disease (OMD). While short-term LC rates are well-documented, data on long-term LC remain limited. This study investigated long-term LC after stereotactic body radiotherapy (SBRT), using respiratory motion management techniques.
View Article and Find Full Text PDFSports (Basel)
January 2025
Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain.
To reduce the risk of syncope, trained breath-hold divers (BHDs) use a specialized breathing technique after surfacing called "hook breathing" (HB). It consists of a full inspiration followed by a Valsalva-like maneuver and with subsequent exhalation performed against resistance to generate continuous positive airway pressure during exhalation. This study analyzed the influence of HB on oxygen saturation recovery after a -40 m depth apnea dive in trained BHDs.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
January 2025
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Aims: To assess the robustness of 4D-optimised IMPT and PAT plans against interplay effects in non-small cell lung cancer (NSCLC) patients with respiratory motion over 10 mm, and to provide insights into the use of proton-based stereotactic body radiotherapy (SBRT) for lung cancer with significant tumour movement.
Materials And Methods: Fourteen patients with early-stage NSCLC and tumour motion >10 mm were selected. Three hypofraction regimens were generated using 4D robust optimisation with the IMPT and PAT techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!