When a mixture of two salts in an aqueous solution contains a weakly and a strongly hydrated anion, their combined effect is nonadditive. Herein, we report such nonadditive effects on the lower critical solution temperature (LCST) of poly( N-isopropylacrylamide) (PNiPAM) for a fixed concentration of NaSO and an increasing concentration of NaI. Using molecular dynamics simulations and vibrational sum frequency spectroscopy, we demonstrate that at low concentrations of the weakly hydrated anion (I), the cations (Na) preferentially partition to the counterion cloud around the strongly hydrated anion (SO), leaving I more hydrated. However, upon further increase in the NaI concentration, this weakly hydrated anion is forced out of solution to the polymer/water interface by sulfate. Thus, the LCST behavior of PNiPAM involves competing roles for ion hydration and polymer-iodide interactions. This concept can be generally applied to mixtures containing both a strongly and a weakly hydrated anion from the Hofmeister series.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b00295 | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.
View Article and Find Full Text PDFFood Res Int
January 2025
University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio de Lima, Coimbra 3030-790, Portugal. Electronic address:
Fructooligosaccharides (FOS) are a promising choice for cryoprotection of lactic acid bacteria (LAB). However, the mechanism by which this protection takes place is not well understood. Molecular simulation is a key tool for gathering insights into complex physicochemical problems like this.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India.
Silk-fibroin hydrogels have gained considerable attention in recent years for their versatile biomedical applications. The physical properties of a complex hydrogel, comprising silk fibroin and riboflavin, surpass those of the silk fibroin-hydrogel without additives. This study investigates silk fibroin-riboflavin (silk-RIB) hydrogel at the atomistic level to uncover molecular structures and chemical characteristics specific to silk fibroin and riboflavin molecules in an aqueous medium.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
Molecular dynamics simulation of an aqueous solution of lithium bis(trifluoromethanesulfonyl)amide, LiTFSA, was performed at various concentrations to relate its liquid structure with frequency-dependent shear viscosity. The structure factor exhibited a low- peak that represents a heterogeneous structure composed of water and anion domains, and the lithium ion existed in the water domain due to its strong hydration. The frequency-dependent shear viscosity showed bimodal relaxation, and the relative contribution of the slower mode increased with an increase in the salt concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!