The direction synthesis of biofunctional nanomaterials with DNA as the template is of high application value. By using phosphorothioate-thymine single-stranded DNA (PS-T-ssDNA) as the template and through synthetic conditions optimization, novel low-toxicity and environment-friendly ssDNA-functionalized room-temperature phosphorescent quantum dots (PS-T-ssDNA RTP QDs) were prepared at low temperature (37 °C). Then, the quantitative RTP-based mercury(II) (Hg) detection was achieved by utilizing the specific identifying ability of T-base-pair Hg (T-Hg-T) and its photoinduced electron transfer. This RTP sensor in Hg detection had a linear range of 0.02 to 0.8 μM and a detection limit of 4.8 nM. The dependence on RTP of QDs effectively avoids interference from background fluorescence and scattering light in the environment or biological samples. This sensor also possessed an RTP stability and a long service life and did not require sample pretreatment. Thus this sensor is suitable for environmental and quantitative Hg detection in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b05099DOI Listing

Publication Analysis

Top Keywords

room-temperature phosphorescent
8
phosphorescent quantum
8
quantum dots
8
mercuryii detection
8
rtp qds
8
biological samples
8
detection
5
preparation single-stranded
4
single-stranded dna-templated
4
dna-templated room-temperature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!