The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants.

Mol Plant Pathol

National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

Published: May 2019

Reactive oxygen species (ROS) are involved in the pathogen-host interactions, and play a Janus-faced role in the resistance and susceptibility of plants to biotrophic and necrotrophic pathogens. The ascomycete fungus Fusarium graminearum causes hazardous wheat Fusarium head blight worldwide. Deletion of the putative secreted catalase-peroxidase gene in F. graminearum, KatG2, reduced the virulence in wheat spike infection. However, it remains unclear when and where KatG2 scavenges ROS during the invasion of wheat. In this study, we delineate the change in ROS levels in the transition of the infection phase under microscopic observation. Correspondingly, the pathogen switches its strategy of infection with temporal and spatial regulation of KatG2 to counteract oxidative stress generated by host plant cells. With the native promoter-driven KatG2-mRFP strain, we show that KatG2-mRFP expression was induced in planta and accumulated in the infection front region at the early infection stage. In contrast to its ubiquitous cellular localization in runner hyphae, KatG2-mRFP is exclusively located on the cell wall of invading hyphal cells, especially at the pathogen-host cellular interface. Using posttranslational modification analysis, we found that asparagine residues at the 238 and 391 positions of KatG2 could be modified by N-glycosylation and that these two residues are required for KatG2 accumulation and cell wall localization in planta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637876PMC
http://dx.doi.org/10.1111/mpp.12785DOI Listing

Publication Analysis

Top Keywords

fusarium graminearum
8
cell wall
8
katg2
6
infection
5
spatiotemporal control
4
control katg2
4
katg2 catalase-peroxidase
4
catalase-peroxidase contributes
4
contributes invasiveness
4
invasiveness fusarium
4

Similar Publications

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.

View Article and Find Full Text PDF

Chitosan (CS), derived from the partial deacetylation and hydrolysis of chitin, varies in the degree of deacetylation, molecular weight, and origin, influencing its biological effects, including antifungal properties. In plants, CS triggers immune responses and stimulates biomass growth. Previously, we found that the antifungal activity of CS was strongly dependent on its physicochemical properties.

View Article and Find Full Text PDF

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!