AI Article Synopsis

  • Epimagnolin A is a lignan from Magnolia fargesii, traditionally used in Asian medicine for headaches and nasal congestion, but its anti-inflammatory effects had not been previously studied.
  • Research showed that epimagnolin A decreased IL-6 promoter activity and production in human monocytic THP-1 cells stimulated by PMA.
  • The compound was found to inhibit the phosphorylation of specific proteins and the activity of signaling pathways associated with inflammation, indicating its potential as a therapeutic agent for inflammatory diseases.

Article Abstract

Epimagnolin A is a lignan obtained from the flower buds of Magnolia fargesii, which is traditionally used in Asian medicine for treating headache and nasal congestion. A herbal compound fargesin obtained from M. fargesii, has exerted anti-inflammatory effects in human monocytic THP-1 cells in the previous study. The anti-inflammatory effects of epimagnolin A, however, have been not elucidated yet. In this study, it was demonstrated that epimagnolin A reduced phorbol-12-myristate-13-acetate (PMA)-induced IL-6 promoter activity and IL-6 production in human monocytic THP-1 cells. Furthermore, it was investigated the modulating effects of epimagnolin A on mitogen-activated protein kinase, nuclear factor-kappa B (NF-κB), and activator protein 1 (AP-1) activities. Phosphorylation of p38 and nuclear translocation of p50 and c-Jun were down-regulated by epimagnolin A in the PMA-stimulated THP-1 cell. The results revealed that epimagnolin A attenuated the binding affinity of NF-κB and AP-1 transcription factors to IL-6 promoter and IL-6 production through p38/NF-kB and AP-1 signaling pathways in the PMA-stimulated THP-1 cells. These results suggest that epimagnolin A can be a useful drug for the treatment of inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22746DOI Listing

Publication Analysis

Top Keywords

thp-1 cells
16
il-6 production
12
pma-stimulated thp-1
12
epimagnolin
8
ap-1 signaling
8
signaling pathways
8
pathways pma-stimulated
8
cells epimagnolin
8
anti-inflammatory effects
8
human monocytic
8

Similar Publications

Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).

Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.

View Article and Find Full Text PDF

Dynamin-Related Protein 1 Orchestrates Inflammatory Responses in Periodontal Macrophages via Interaction With Hexokinase 1.

J Clin Periodontol

January 2025

Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).

Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.

View Article and Find Full Text PDF

Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.

View Article and Find Full Text PDF

Background/aim: No specific pharmacological treatment regimen for idiopathic pulmonary fibrosis (IPF) exists. Therefore, new antiinflammatory therapeutic strategies are needed. Cannabinoids (CBs), known for their inflammation-modulating and antifibrotic effects, may be potential medication candidates for treating IPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!