Activity of CYP3A, an enzyme responsible for metabolism of many marketed drugs, is induced by ~ 2-fold in pregnant women. Through studies in sandwich-cultured human hepatocytes (SCHH) and HepaRG cells, our laboratory has shown that this induction is likely mediated by the increase in cortisol plasma concentrations during pregnancy. Cortisol, at plasma concentrations observed during the third trimester (~ 800 nM), either alone or in combination with other pregnancy-related hormones, induces CYP3A activity in SCHH and HepaRG cells when cultured in dexamethasone-free media. To determine the mechanism(s) by which cortisol induces CYP3A activity, HepaRG cells were pre-incubated in dexamethasone-free medium and then incubated for 72 h with cortisol (798 nM). Glucocorticoid receptor (GR), pregnane X receptor (PXR), and CYP3A4 or CYP3A5 were knocked down using siRNA, and mRNA expression of these genes was measured. CYP3A4, and not CYP3A5, was found to be the dominant contributor to total CYP3A activity in control- and cortisol-treated HepaRG cells. Constitutive mRNA expression of CYP3A4 in HepaRG cells was regulated by both PXR and GR whereas constitutive expression of CYP3A5 in HepaRG cells was regulated by GR alone. Cortisol-mediated CYP3A4 induction in HepaRG cells was primarily mediated by GR-dependent PXR induction pathway and to a smaller extent via a PXR-independent pathway. Cortisol-mediated CYP3A5 induction was regulated by GR-dependent PXR-independent pathway. These data indicate that PXR plays a central role in cortisol-mediated induction of CYP3A activity during pregnancy and suggests that other enzymes and transporters, such as CYP2B6 and P-glycoprotein, may also be induced during pregnancy via the same mechanism(s).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248763 | PMC |
http://dx.doi.org/10.1208/s12248-019-0316-z | DOI Listing |
Int J Mol Sci
January 2025
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy.
Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Environmental Science, Baylor University, Waco, TX 76798, USA.
Over the past two decades, research has increasingly focused on the interactions between diet, gut microbiota, and host organisms. Recent evidence suggests that tryptophan, an essential amino acid, can be metabolized by gut microbiota into indoles, which have significant biological effects. However, most research is limited to indole and its liver metabolite, indoxyl sulfate.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania.
Background: Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China.
Background: Metabolic associated fatty liver disease (MAFLD), previously defined as non-alcoholic fatty liver disease (NAFLD), has been shown to be closely related to many environmental pollutants. Lately, we found methyl tert-butyl ether (MTBE), a new environmental pollutant, could increase NAFLD risk in American adults, which still needs more population epidemiological studies to verify, and its pathogenic mechanism is not yet clear.
Methods: We conducted a cross-sectional study among petrol station workers, diagnosed their MAFLD according to internationally recognised diagnostic criteria, assessed the potential association of MTBE exposure with MAFLD risk, and explored the miR-18a-5p/PXR/SREBP2 pathway as possible pathogenic mechanisms in male Wistar rats and HepaRG cells treated with MTBE.
SLAS Discov
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!