Extracellular vesicles (EVs) are nano-sized, membrane-bound structures secreted by cells and play critical roles in mediating intercellular signaling. EVs based on their size as well as mechanisms of biosynthesis are categorized as either microvesicles (200-1000 nm) or exosomes (30-200 nm). The EVs carry several biomolecules like proteins, DNAs, RNAs, and lipids into other cells and modulate several cellular functions. Being of very small sizes, it is very challenging to analyze them using conventional microscopes. Here, we report a new method developed by us for visualizing EVs using simple immune-fluorescence based technique, wherein the isolated EVs can be stained with fluorescently tagged antibodies to proteins present in EVs. The stained EVs can then be analyzed by using either confocal or super-resolution microscopes. Our method detailed here is equally effective in staining proteins that are present inside the EVs as well as those localized to the membranes of vesicles. By employing unique staining strategies, we have minimized the background noise and thereby improved the signal strength in confocal microscope. Using electron microscopy, we have ascertained that the structural integrity of the labeled EVs is intact. More importantly, the labeling of EVs does not affect their functionality and their localization can be tracked after its uptake by recipient cells without resorting to any conventional reporter-based strategies or lipophilic dyes. In conclusion, the method described here is a simple, sensitive and efficient immune-fluorescence based method for visualization of molecules within the EVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419365 | PMC |
http://dx.doi.org/10.1186/s12575-019-0092-2 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.
View Article and Find Full Text PDFJ Clin Med
January 2025
Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain.
Lung cancer is the primary cause of cancer-related deaths. Most patients are typically diagnosed at advanced stages. Low-dose computed tomography (LDCT) has been proven to reduce lung cancer mortality, but screening programs using LDCT are associated with a high number of false positives and unnecessary thoracotomies.
View Article and Find Full Text PDFMolecules
January 2025
Neuroscience and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
Alzheimer's disease is a challenge in modern healthcare due to its complex etiology and increasing prevalence. Despite advances, further understanding of Alzheimer's disease pathophysiology is needed, particularly the role of Aβ neurotoxic peptide. Fourier transform infrared spectroscopy (FTIR) has shown potential as a screening tool for several pathologies, including Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!