The latitudinal temperature gradient between the Equator and the poles influences atmospheric stability, the strength of the jet stream and extratropical cyclones. Recent global warming is weakening the annual surface gradient in the Northern Hemisphere by preferentially warming the high latitudes; however, the implications of these changes for mid-latitude climate remain uncertain. Here we show that a weaker latitudinal temperature gradient-that is, warming of the Arctic with respect to the Equator-during the early to middle part of the Holocene coincided with substantial decreases in mid-latitude net precipitation (precipitation minus evapotranspiration, at 30° N to 50° N). We quantify the evolution of the gradient and of mid-latitude moisture both in a new compilation of Holocene palaeoclimate records spanning from 10° S to 90° N and in an ensemble of mid-Holocene climate model simulations. The observed pattern is consistent with the hypothesis that a weaker temperature gradient led to weaker mid-latitude westerly flow, weaker cyclones and decreased net terrestrial mid-latitude precipitation. Currently, the northern high latitudes are warming at rates nearly double the global average, decreasing the Equator-to-pole temperature gradient to values comparable with those in the early to middle Holocene. If the patterns observed during the Holocene hold for current anthropogenically forced warming, the weaker latitudinal temperature gradient will lead to considerable reductions in mid-latitude water resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-019-1060-3 | DOI Listing |
Materials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
ArGEnCo Department, MSM Team, University of Liège, Quartier Polytech 1, Allée de la Découverte 9 (B52), 4000 Liège, Belgium.
Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due to their ability to reduce material consumption, to manufacture complex parts, and to produce out-of-equilibrium microstructures, which can be beneficial for mechanical behavior. IN718's properties are, however, very sensitive to microstructural features, which strongly depend on the manufacturing process and subsequent heat treatments.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland.
Exploring tazarotene, a third-generation retinoid for potential hand osteoarthritis treatment, this study presents the development and validation of an ultra-performance liquid chromatography with quadrupole detector mass spectrometry (UPLC-QDa) method for the simultaneous quantification of tazarotene and tazarotenic acid, its active metabolite, in porcine skin. Method development involved a design-of-experiments approach for chromatographic optimization of gradient steepness, organic solvent volume, column temperature, capillary voltage, flow rate, and cone voltage. Central composite orthogonal design was used to optimize peak area, peak width, retention time, and resolution.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Instrument and Electronics, North University of China, Taiyuan 030051, China.
As an innovative branch of electronics, intelligent electronic textiles (e-textiles) have broad prospects in applications such as e-skin, human-computer interaction, and smart homes. However, it is still a challenge to distinguish multiple stimuli in the same e-textile. Herein, we propose a dual-parameter smart e-textile that can detect human pulse and body temperature in real time, with high performance and no signal interference.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.
The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!