HIV-1 replication requires direct interaction between HIV-1 reverse transcriptase (RT) and cellular eukaryotic translation elongation factor 1A (eEF1A). Our previous work showed that disrupting this interaction inhibited HIV-1 uncoating, reverse transcription, and replication, indicating its potential as an anti-HIV-1 target. In this study, we developed a sensitive, live-cell split-luciferase complementation assay (NanoBiT) to quantitatively measure inhibition of HIV-1 RT interaction with eEF1A. We used this to screen a small molecule library and discovered small-molecule oxazole-benzenesulfonamides (C7, C8, and C9), which dose dependently and specifically inhibited the HIV-1 RT interaction with eEF1A. These compounds directly bound to HIV-1 RT in a dose-dependent manner, as assessed by a biolayer interferometry (BLI) assay, but did not bind to eEF1A. These oxazole-benzenesulfonamides did not inhibit enzymatic activity of recombinant HIV-1 RT in a homopolymer assay but did inhibit reverse transcription and infection of both wild-type (WT) and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 in a dose-dependent manner in HEK293T cells. Infection of HeLa cells was significantly inhibited by the oxazole-benzenesulfonamides, and the antiviral activity was most potent against replication stages before 8 h postinfection. In human primary activated CD4 T cells, C7 inhibited HIV-1 infectivity and replication up to 6 days postinfection. The data suggest a novel mechanism of HIV-1 inhibition and further elucidate how the RT-eEF1A interaction is important for HIV-1 replication. These compounds provide potential to develop a new class of anti-HIV-1 drugs to treat WT and NNRTI-resistant strains in people infected with HIV. Antiretroviral drugs protect many HIV-positive people, but their success can be compromised by drug-resistant strains. To combat these strains, the development of new classes of HIV-1 inhibitors is essential and a priority in the field. In this study, we identified small molecules that bind directly to HIV-1 reverse transcriptase (RT) and inhibit its interaction with cellular eEF1A, an interaction which we have previously identified as crucial for HIV-1 replication. These compounds inhibit intracellular HIV-1 reverse transcription and replication of WT HIV-1, as well as HIV-1 mutants that are resistant to current RT inhibitors. A novel mechanism of action involving inhibition of the HIV-1 RT-eEF1A interaction is an important finding and a potential new way to combat drug-resistant HIV-1 strains in infected people.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613760 | PMC |
http://dx.doi.org/10.1128/JVI.00239-19 | DOI Listing |
AIDS Behav
January 2025
Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA.
Military members and female sex workers (FSWs) may be more likely to acquire or transmit HIV. Mapping HIV transmission across these high-risk populations and identifying behaviors associated with sexual network clustering are needed for effective HIV prevention approaches. A cross-sectional study recruited participants newly diagnosed with HIV among militaries, civilians, and FSWs in Zambia, Senegal, and Democratic Republic of the Congo (DRC).
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Service de santé publique, Inserm CESP U1018, Université Paris-Saclay, APHP. Université Paris-Saclay, le Kremlin-Bicêtre, France.
Background: Therapeutic outcomes for patients infected by genetically divergent HIV-1/O are not well-known due to scarce data and the lack of an appropriate comparison with patients infected by pandemic HIV-1/M. We aimed to compare the immunological and virological response to cART between HIV-1/O and HIV-1/M patients followed in France.
Methods: All naïve HIV-1/O subjects initiating cART in France in ANRS-ORIVAO study were compared to naïve HIV-1/M subjects initiating cART in ANRS-COPANA cohort.
J Virol
January 2025
Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.
Unlabelled: Microtubule acetylation, a post-translational modification catalyzing the addition of acetyl groups to lysine residues on alpha tubulin, confers mechanical resilience to microtubules and influences intracellular cargo transport. Despite its known cellular functions, its role in viral infections remains poorly understood. The goal of this study was to determine the role of microtubule acetylation in both HIV-1 infection and TRIM69-mediated restriction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!