BACKGROUND Rheumatoid arthritis (RA) has a high prevalence in the elderly population. The genes and pathways in the inflamed synovium in patients with RA are poorly understood. This study aimed to identify differentially expressed genes (DEGs) linked to the progression of synovial inflammation in RA using bioinformatics analysis. MATERIAL AND METHODS Gene expression profiles of datasets GSE55235 and GSE55457 were acquired from the Gene Expression Omnibus (GEO) database. DEGs were identified using Morpheus software, and co-expressed DEGs were identified with Venn diagrams. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into subnetworks using the Molecular Complex Detection (MCODE) algorithm. The functions of the top module were assessed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. RESULTS DEGs that were upregulated were significantly enhanced in protein binding, the cell cytosol, organization of the extracellular matrix (ECM), regulation of RNA transcription, and cell adhesion. DEGs that were downregulated were associated with control of the immune response, B-cell and T-cell receptor signaling pathway regulation. KEGG pathway analysis showed that upregulated DEGs enhanced pathways associated with the cell adherens junction, osteoclast differentiation, and hereditary cardiomyopathies. Downregulated DEGs were enriched in primary immunodeficiency, cell adhesion molecules (CAMs), cytokine-cytokine receptor interaction, and hematopoietic cell lineages. CONCLUSIONS The findings from this bioinformatics network analysis study identified molecular mechanisms and the key hub genes that may contribute to synovial inflammation in patients with RA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448456 | PMC |
http://dx.doi.org/10.12659/MSM.915451 | DOI Listing |
Cytokine
January 2025
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China. Electronic address:
Background: Rheumatoid arthritis (RA) is an inflammatory disease of the joints mediated by immune cells. As an immune-related mode of cell death, pyroptosis has yet to be fully understood in RA. This research identified novel pyroptosis-related markers in RA and confirmed its functional significance in RA.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFAm J Chin Med
January 2025
First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China.
Osteoarthritis (OA) is the most common chronic degenerative joint disease, characterized by cartilage damage, synovial inflammation, subchondral bone sclerosis, marginal bone loss, and osteophyte development. Clinical manifestations include inflammatory joint pain, swelling, osteophytes, and limitation of motion. The pathogenesis of osteoarthritis has not yet been fully uncovered.
View Article and Find Full Text PDFBMJ Open
January 2025
Documentation and Scientific Information Service, Centro Hospitalar e Universitario de Coimbra EPE, Coimbra, Portugal.
Introduction: This review aims to synthesise research evidence regarding biomarkers in the synovial fluid that may predict the risk of post-traumatic osteoarthritis (PTOA) in young adults. Considering the high prevalence of knee joint injuries, particularly among youth sports athletes, this review will focus on anterior cruciate ligament and/or meniscal ruptures. These injuries are highly associated with PTOA, with studies indicating that even with surgical reconstruction, 50%-80% of affected individuals develop knee PTOA within a 10-year follow-up.
View Article and Find Full Text PDFNucl Med Commun
January 2025
Department of Pharmacology.
Background And Objective: Yttrium-90 plays a significant role in managing drug-resistant inflammatory arthritis through radionuclide synovectomy, where the radioisotope is injected into the affected joint to alleviate pain and inflammation by targeting the synovial tissue. This study aims to evaluate the effectiveness and safety of Yttrium-90 hydroxyapatite radionuclide synovectomy in improving joint functionality, as judged by physicians, in patients with inflammatory arthritis who had not responded to conventional treatments.
Methods: Patients with inflammatory arthritis were recruited from the orthopedics department and referred to the nuclear medicine department for evaluation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!