Life in living organisms is dependent on specific and purposeful interaction between other molecules. Such purposeful interactions make the various processes inside the cells and the bodies of living organisms possible. DNA-protein interactions, among all the types of interactions between different molecules, are of considerable importance. Currently, with the development of numerous experimental techniques, diverse methods are convenient for recognition and investigating such interactions. While the traditional experimental techniques to identify DNA-protein complexes are time-consuming and are unsuitable for genome-scale studies, the current high throughput approaches are more efficient in determining such interaction at a large-scale, but they are clearly too costly to be practice for daily applications. Hence, according to the availability of much information related to different biological sequences and clearing different dimensions of conditions in which such interactions are formed, with the developments related to the computer, mathematics, and statistics motivate scientists to develop bioinformatics tools for prediction the interaction site(s). Until now, there has been much progress in this field. In this review, the factors and conditions governing the interaction and the laboratory techniques for examining such interactions are addressed. In addition, developed bioinformatics tools are introduced and compared for this reason and, in the end, several suggestions are offered for the promotion of such tools in prediction with much more precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-019-04763-1 | DOI Listing |
BMC Infect Dis
December 2024
Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland.
Introduction: The ability to detect pathogenic bacteria before the onsets of severe respiratory symptoms and to differentiate bacterial infection allows to improve patient-tailored treatment leading to a significant reduction in illness severity, comorbidity as well as antibiotic resistance. As such, this study refines the application of the non-invasive Secondary Electrospray Ionization-High Resolution Mass Spectrometry (SESI-HRMS) methodology for real-time and early detection of human respiratory bacterial pathogens in the respiratory tract of a mouse infection model.
Methods: A real-time analysis of changes in volatile metabolites excreted by mice undergoing a lung infection by Staphylococcus aureus or Streptococcus pneumoniae were evaluated using a SESI-HRMS instrument.
J Biotechnol
December 2024
Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21 century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications.
View Article and Find Full Text PDFEBioMedicine
December 2024
Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, 310003, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, PR China. Electronic address:
Background: While metagenomic next-generation sequencing (mNGS) has been acknowledged as a valuable diagnostic tool for infections, its clinical validity and impact on patient management when using fresh tissue samples remains uncertain.
Methods: We conducted a retrospective cross-sectional study involving patients who underwent tissue mNGS at a tertiary hospital in China from February 2021 to February 2024, aiming to assess its ability to detect plausible pathogens and its clinical validity and impact.
Findings: A total of 520 mNGS results from 508 patients were analysed, detecting plausible pathogens in 302 (58.
Am J Case Rep
December 2024
Department of General Medicine, Saga University Hospital, Saga, Japan.
BACKGROUND Appropriate management of patients who have fallen is crucial for reducing damage and mortality. We report the case of a patient who fell from a seated position, which caused traumatic liver injury, with gastrointestinal symptoms as the primary patient concern. CASE REPORT A woman in her 80s who was living independently fell from a seated position during the daytime.
View Article and Find Full Text PDFBiogerontology
December 2024
Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!