Arginine methylation is a common protein post-translational modification (PTM) that plays a key role in eukaryotic cells. Three distinct types of this modification are found in mammals: asymmetric NN-dimethylarginine (aDMA), symmetric NN-dimethylarginine (sDMA), and an intermediate N-monomethylarginine (MMA). Elucidation of regulatory mechanisms of arginine methylation in living organisms requires precise information on both the type of the modified residues and their location inside the protein amino acid sequences. Despite mass spectrometry (MS) being the method of choice for analysis of multiple protein PTMs, unambiguous characterization of protein arginine methylation may not be always straightforward. Indeed, frequent internal basic residues of Arg methylated tryptic peptides hamper their sequencing under positive ion mode collision-induced dissociation (CID), the standardly used tandem mass spectrometry method, while the relative stability of the aDMA and sDMA side chains under alternative non-ergodic electron-based fragmentation techniques, electron-capture and electron transfer dissociations (ECD and ETD), may impede differentiation between the isobaric residues. Here, for the first time, we demonstrate the potential of the negative ion mode collision-induced dissociation MS for analysis of protein arginine methylation and present data revealing that the negative polarity approach can deliver both an unambiguous identification of the arginine methylation type and extensive information on the modified peptide sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591203PMC
http://dx.doi.org/10.1007/s13361-019-02176-9DOI Listing

Publication Analysis

Top Keywords

arginine methylation
24
ion mode
12
mode collision-induced
12
collision-induced dissociation
12
protein arginine
12
negative ion
8
dissociation analysis
8
analysis protein
8
mass spectrometry
8
spectrometry method
8

Similar Publications

Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity.

Antibiotics (Basel)

December 2024

Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain.

: Cationic surfactants are potential antimicrobial candidates. Even so, they are the foremost irritative and incompatible group, which limits their usage. The incorporation of surfactants in biopolymer-based nanoparticles is a feasible strategy to improve their efficacy and reduce those drawbacks.

View Article and Find Full Text PDF

Protein arginine methyltransferase 5 (PRMT5) is a promising cancer target, yet it's unclear which PRMT5 roles underlie this vulnerability. Here, we establish that PRMT5 inhibition induces a special class of unspliced introns, called detained introns (DIs). To interrogate the impact of DIs, we depleted CLNS1A, a PRMT5 cofactor that specifically enables Sm protein methylation.

View Article and Find Full Text PDF

Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear.

View Article and Find Full Text PDF

Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis.

Nat Commun

January 2025

The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.

Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.

View Article and Find Full Text PDF

Homozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!