In structured populations the spatial arrangement of cooperators and defectors on the interaction graph together with the structure of the graph itself determines the game dynamics and particularly whether or not fixation of cooperation (or defection) is favored. For networks described by regular graphs and for a single cooperator (and a single defector) the question of fixation can be addressed by a single parameter, the structure coefficient. This quantity is invariant with respect to the location of the cooperator on the graph and also does not vary over different networks. We may therefore consider it to be generic for regular graphs and call it the generic structure coefficient. For two and more cooperators (or several defectors) fixation properties can also be assigned by structure coefficients. These structure coefficients, however, depend on the arrangement of cooperators and defectors which we may interpret as a configuration of the game. Moreover, the coefficients are specific for a given interaction network modeled as a regular graph, which is why we may call them specific structure coefficients. In this paper, we study how specific structure coefficients vary over interaction graphs and analyze how spectral properties of interaction networks relate to specific structure coefficients. We also discuss implications for the benefit-to-cost ratios of donation games.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2019.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!