[Effect of high tidal volume mechanical ventilation on pulmonary autophagy and mitochondrial damage in rats].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

Department of Anesthesiology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China. Corresponding author: Pan Linghui, Email:

Published: March 2019

Objective: To investigate the relationship between different tidal volume (VT) mechanical ventilation (MV) and autophagy and mitochondrial damage in rats.

Methods: A total of 120 clean-grade male Sprague-Dawley (SD) rats were divided into five groups (n = 24) by random number table method, and then given 0 (spontaneous breathing), 10, 20, 30, 40 mL/kg VT for MV. The rats in each group were subdivided into four subgroups of 1, 2, 3, and 4 hours according to ventilation time, with 6 rats in each subgroup. The lung tissue and bronchoalveolar lavage fluid (BALF) were harvested, and alveolar macrophages (AMs) and type II alveolar epithelial cells (AEC II) were cultured in vitro. The mRNA and protein expressions of autophagy-associated protein microtubule-associated protein 1 light chain 3B-II (LC3B-II) and autophagy-related genes Beclin1 and p62 were determined by reverse transcription-polymerase chain reaction (RT-PCR) or Western Blot. Lung autophagosome formation was observed under transmission electron microscope. The levels of adenosine triphosphate (ATP), reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in lung tissue were determined for assessing mitochondrial damage.

Results: There were no significant differences in the mRNA and protein expressions of LC3B-II, p62 and Beclin1 at 1 hour after ventilation among the groups. With the prolonged ventilation time, the mRNA and protein expressions of LC3B-II, p62 and Beclin1 in MV groups were increased gradually, peaked at 2-3 hours, and they were increased significantly in 30 mL/kg VT group as compared with those in spontaneous respiration group with statistical significances [ventilation for 2 hours: LC3B-II mRNA (2) was 2.44±0.24 vs. 1.12±0.04, LC3B-II/LC3B-I was 1.42±0.16 vs. 0.57±0.03, p62 mRNA (2) was 2.96±0.14 vs. 1.14±0.02, Beclin1 mRNA (2) was 2.80±0.13 vs. 1.14±0.02; ventilation for 3 hours: p62/β-actin was 1.14±0.15 vs. 0.55±0.04, Beclin1/β-actin was 1.27±0.06 vs. 0.87±0.04, all P < 0.05]. Autophagosomes and autolysosomes were found in AEC II after ventilation for 2 hours at 30 mL/kg VT by transmission electron microscopy, but not in AEC I. Compared with spontaneous breathing group, ATP synthesis in AMs was significantly decreased at 2 hours of ventilation in 30 mL/kg VT group (A value: 0.82±0.05 vs. 1.00±0.00, P < 0.05), ROS accumulate in AMs and AEC II were significantly increased [ROS in AMs: (33.83±4.00)% vs. (6.90±0.62)%, ROS in AEC II: (80.68±0.90)% vs. (2.16±0.19)%, both P < 0.05]. With the increase in VT and the prolongation of ventilation time, ATP and ROS levels in AMs and AEC II were gradually decreased, the ATP (A value) in AMs at 4 hours of ventilation in 40 mL/kg VT group was 0.41±0.05, the ROS in AMs was (12.95±0.88)%, and the ROS in AEC II was (40.43±2.29)%. With the increase in VT and the prolongation of ventilation time, MMP levels were gradually increased, the MMP (green/red fluorescence intensity ratio) in AMs at 2 hours of ventilation in 30 mL/kg VT group was 1.11±0.17, the MMP in AEC II was 0.96±0.04, and the MMP (green/red fluorescence intensity ratio) at 4 hours of ventilation in 40 mL/kg VT group was 0.51±0.07 and 0.49±0.06, respectively.

Conclusions: The MV with high VT could induce autophagy activation and mitochondrial damage in lung tissue of rats, and the longer the ventilation time, the more obvious autophagy in the lung.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2019.03.013DOI Listing

Publication Analysis

Top Keywords

hours ventilation
20
ventilation time
20
ml/kg group
20
ventilation ml/kg
16
ventilation
14
mitochondrial damage
12
lung tissue
12
mrna protein
12
protein expressions
12
hours
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!